Al comenzar el año escolar un alumno compro 6 libros y 7 cuadernos por $199.
Para completar su equipo de trabajo, le faltan 2 libros y 3 cuadernos que compra posteriormente por $71, ¿Cuanto le cuesta cada libro y cada cuadernos suponiendo que ambos tienen el mismo precio?
Respuestas
Respuesta dada por:
3
Aver se hace con suma de ecuaciones mira, X va a ser precio de libros, Y precio de cuadernos.
6x+7y=199
lo mismo hacemos con el segundo enunciado
2x+3y=71
entonces hacemos sumatoria de ecuaciones en linea
6x+7y=199
2x+3y=71
eliminamos una variable
6x+7y=199
-3(2x+3y)=-3(71)
6x+7y=199
-6x-9y=-213
-2y=-14
y=7
ahora que sabemos cuánto es Y podemos reemplazar
2x+3y=71
2x+21=71
2x=50
X= 25
ahora sabemos los valores de X e Y
respondemos la primera pregunta, el precio de cada libro sería 25
6x+7y=199
lo mismo hacemos con el segundo enunciado
2x+3y=71
entonces hacemos sumatoria de ecuaciones en linea
6x+7y=199
2x+3y=71
eliminamos una variable
6x+7y=199
-3(2x+3y)=-3(71)
6x+7y=199
-6x-9y=-213
-2y=-14
y=7
ahora que sabemos cuánto es Y podemos reemplazar
2x+3y=71
2x+21=71
2x=50
X= 25
ahora sabemos los valores de X e Y
respondemos la primera pregunta, el precio de cada libro sería 25
Respuesta dada por:
0
Es encomtrar el valor de x y y y eliminar dos variablesEl precio de los lobros es de $25 porqu
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años