en una progresión aritmética el término de lugar 40 es 59 ; el término de lugar 27 es 33.Hallar el primer término y la diferencia común de dicha progresión

Respuestas

Respuesta dada por: preju
20
Diré que el término nº 27 es el nº 1 de la progresión aritmética PA
Por tanto el término nº 40 será  40-27 = 13, más el primer término que no está contabilizado en esa resta, tendré que es el término nº 14 de la PA

Así pues tengo estos datos:
a₂₇ = a₁ = 33
a₄₀ = a₁₄ = 59
n = 14

Recurro a la fórmula del término general de cualquier PA, y sustituyo:
a_n= a_1+(n-1)*d \\  \\  a_{14}=...\ 59 =33+(14-1)*d \\  \\ 59-33=13d \\  \\ 13d=26 \\  \\ d=2

Sabiendo la diferencia "d", vuelvo a emplear la fórmula anterior para calcular el término nº 1  tomando ahora el dato real, es decir que:

a₂₇ = 33
n = 27

33=a_1+(27-1)*2 \\  \\ a_1=33-52=-19

Saludos.

Preguntas similares