Respuestas
Respuesta:
La Segunda Raíz o Raíz Cuadrada del número 520 es 22.803508502 Esto se comprueba multiplicando 22.803508502 por si mismo, debe arrojar como resultado 520
La raíz cuadrada de 520 es 22.80350850198276
O, √520 = 22.80350850198276
Paso 1:
Divide el número (520) por 2 para obtener la primera aproximación a la raíz cuadrada.
primera aproximación = 520/2 = 260.
Paso 2:
Divide 520 por el resultado obtenido en el paso anterior. d = 520/260 = 2.
Tira la media aritmética de (d) y el valor obtenido en el paso 1: (2 + 260)/2 = 131 (nueva aproximación).
Error = nueva aproximación - valor anterior = 260 - 131 = 129.
129 > 0.01. Como el error > exactitud, repite este paso una vez más.
Paso 3:
Divide 520 por el resultado obtenido en el paso anterior. d = 520/131 = 3.9694656489.
Tira la media aritmética de (d) y el valor obtenido en el paso 2: (3.9694656489 + 131)/2 = 67.4847328245 (nueva aproximación).
Error = nueva aproximación - valor anterior = 131 - 67.4847328245 = 63.5152671755.
63.5152671755 > 0.01. Como el error > exactitud, repite este paso una vez más.
Paso 4:
Divide 520 por el resultado obtenido en el paso anterior. d = 520/67.4847328245 = 7.7054465245.
Tira la media aritmética de (d) y el valor obtenido en el paso 3: (7.7054465245 + 67.4847328245)/2 = 37.5950896745 (nueva aproximación).
Error = nueva aproximación - valor anterior = 67.4847328245 - 37.5950896745 = 29.88964315.
29.88964315 > 0.01. Como el error > exactitud, repite este paso una vez más.
Paso 5:
Divide 520 por el resultado obtenido en el paso anterior. d = 520/37.5950896745 = 13.8315935539.
Tira la media aritmética de (d) y el valor obtenido en el paso 4: (13.8315935539 + 37.5950896745)/2 = 25.7133416142 (nueva aproximación).
Error = nueva aproximación - valor anterior = 37.5950896745 - 25.7133416142 = 11.8817480603.
11.8817480603 > 0.01. Como el error > exactitud, repite este paso una vez más.
Paso 6:
Divide 520 por el resultado obtenido en el paso anterior. d = 520/25.7133416142 = 20.2229647084.
Tira la media aritmética de (d) y el valor obtenido en el paso 5: (20.2229647084 + 25.7133416142)/2 = 22.9681531613 (nueva aproximación).
Error = nueva aproximación - valor anterior = 25.7133416142 - 22.9681531613 = 2.7451884529.
2.7451884529 > 0.01. Como el error > exactitud, repite este paso una vez más.
Paso 7:
Divide 520 por el resultado obtenido en el paso anterior. d = 520/22.9681531613 = 22.6400440797.
Tira la media aritmética de (d) y el valor obtenido en el paso 6: (22.6400440797 + 22.9681531613)/2 = 22.8040986205 (nueva aproximación).
Error = nueva aproximación - valor anterior = 22.9681531613 - 22.8040986205 = 0.1640545408.
0.1640545408 > 0.01. Como el error > exactitud, repite este paso una vez más.
Paso 8:
Divide 520 por el resultado obtenido en el paso anterior. d = 520/22.8040986205 = 22.8029183987.
Tira la media aritmética de (d) y el valor obtenido en el paso 7: (22.8029183987 + 22.8040986205)/2 = 22.8035085096 (nueva aproximación).
Error = nueva aproximación - valor anterior = 22.8040986205 - 22.8035085096 = 0.0005901109.
0.0005901109 <= 0.01. Una vez que el error <= exactitud, para el proceso y usa 22.8035085096 como el valor final para la raíz cuadrada.
Luego, podemos decir que la raíz cuadrada de 520 es 22.803 con un error menor que 0.01 (en realidad el error es 0.0005901109). Esto significa que las primeras 3 decimales son correctas. Sólo para comparar, el valor devuelto utilizando la función javascript 'Math.sqrt(520)' é 22.80350850198276.
Nota: Hay otras maneras de calcular raíces cuadradas. Esta es sólo una de ellas.
¿Qué es raíz cuadrada?
Definición de raíz cuadrada
La raíz cuadrada de un número 'a' es un número x tal que x2 = a, en otras palabras, un número x cuyo cuadrado es 'a'. Por ejemplo, 22 es la raíz cuadrada de 484 porque 222 = 22•22 = 484, -22 es la raíz cuadrada de 484 porque (-22)2 = (-22)•(-22) = 484.
LINDA TARDE!!!!
ESPERO VERTE AYUDADO
Explicación paso a paso:
520 no tiene raíz._.
ya que no tiene 2 múltiplos iguales para multiplicarlos y que salga 520 :v
(nadie me entendió._.)