• Asignatura: Física
  • Autor: chetesygru
  • hace 4 meses

Una esfera es lanzada horizontalmente desde una altura de 5 metros con una velocidad de 10m/s. El alcance horizontal debe ser:


uva82582: cómo se llaman
llandelsoldini: en argentina
llandelsoldini: pvp en fre fire
uva82582: ooo
uva82582: no
llandelsoldini: a miedo
uva82582: no me da miedo
uva82582: juego otro
uva82582: hola
belenbenitezch: hola

Respuestas

Respuesta dada por: arkyta
23

El alcance horizontal  \bold {     x_{MAX} }  de la esfera es de 10 metros

Se trata de un problema de tiro horizontal

El tiro horizontal consiste en lanzar un cuerpo horizontalmente desde cierta altura.

Teniendo una composición de movimientos en dos dimensiones: uno horizontal sin aceleración, y el otro vertical con aceleración constante hacia abajo, que es la gravedad

Se trata de un movimiento rectilíneo uniforme (MRU) en su trayectoria horizontal o eje horizontal y un movimiento uniformemente variado (MRUV) en su trayectoria vertical o en el eje vertical

Al inicio del movimiento el proyectil solo posee una velocidad horizontal \bold  { V_{x}       } debido a que carece de ángulo de inclinación, por lo tanto no presenta velocidad vertical inicial o sea que \bold  { V_{y}   = 0    }, luego esa velocidad se va incrementando a medida que el proyectil desciende.

Las ecuaciones del tiro horizontal son

Para el eje x (MRU)

\boxed {\bold  {    x =x_{0}   +V_{x}  \ . \ t   }}

Para el eje y (MRUV)

\boxed {\bold  {  V_{y}   =V_{0y} +a_{y}  \ . \ t }}

\boxed {\bold  {    y =y_{0}   +V_{0y}  \ . \ t + \frac{1}{2} \ . \ a_{y}  \ . \ t^{2}  }}

Dado que

\boxed {\bold  { y_{0}= H       }}

\boxed {\bold  { x_{0}= 0       }}

\boxed {\bold  { a_{y}= g       }}

Podemos reescribir como:

Posición

Para el eje x

\boxed {\bold  {    x =x_{0}   +V \ . \ t   }}

Para el eje y

\boxed {\bold  {    y =H + \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

Velocidad

Para el eje x

\boxed {\bold  {  {V_x}   =V_{0x}  }}

\textsf{Donde  } \ \ \ \bold  a_{x} = 0

Para el eje y

\boxed {\bold  {  V_{y}    =g\  . \ t }}

\textsf{Donde  } \ \ \ \bold  a_{y} =g

SOLUCIÓN

Calculamos el tiempo de vuelo o de permanencia en el aire de la esfera

\large\textsf{Tomamos un valor de gravedad  } \ \ \ \bold  {g=10 \ \frac{m}{s^{2} }   }

Considerando la altura H desde donde ha sido lanzada \bold {H= 5 \ m }

Dado que en el eje Y se tiene un MRUV empleamos la ecuación:

\large\boxed {\bold  {    y =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\bold{y= 0}

\large\boxed {\bold  {    0 =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\large\textsf{Donde despejamos el tiempo }

\boxed {\bold  {    2 \ H  =g \ .\ t^{2}  }}

\boxed {\bold  {  t^{2}      =  \frac{2 \ H}{g }  }}

\boxed {\bold  {  t      = \sqrt{\frac{2 \ H }{g       }    }}}

\boxed {\bold  {  t      = \sqrt{\frac{2\ .  \  5 \ m  }{10 \ \frac{m}{s^{2} }       }    }}}

\boxed {\bold  {  t      = \sqrt{\frac{ 10 \not m  }{10 \ \frac{\not m}{s^{2} }       }    }}}

\boxed {\bold  {  t      = \sqrt{1\  s^{2} }       }   }

\large\boxed {\bold  {  t      = 1 \ segundo    }    }

El tiempo de vuelo o de permanencia en el aire de la esfera es de 1 segundo

Determinamos el alcance horizontal de la esfera

Dado que en el eje X se tiene un MRU para hallar el alcance o la distancia horizontal recorrida por el proyectil, basta multiplicar la velocidad horizontal inicial por el tiempo de vuelo

\large\boxed {\bold  {  d   =V_{0x}  \ . \ t }}

\boxed {\bold  {  d   =V_{x}  \ . \ t }}

\boxed {\bold  {  d   =10 \ \frac{m}{\not s}  \ . \  1\ \not s }}

\large\boxed {\bold  {  d   = 10 \ metros}}

El alcance horizontal  \bold {     x_{MAX} }  de la esfera es de 10 metros

Se adjunta gráfico que evidencia la trayectoria del movimiento

Adjuntos:
Preguntas similares