Ejercicio 4.- Los puntos A(0, 1, 1) y B(2, 1, 3) son dos v ́ertices de un tri ́angulo. El tercer v ́ertice es un
punto de la recta r dada por
2x + y = 0
z = 0
a) [1 punto] Calcula las coordenadas de los posibles puntos C de r para que el tri ́angulo ABC tenga un
́angulo recto en el v ́ertice A.
b) [1’5 puntos] Calcula las coordenadas de los posibles puntos D de r para que el tri ́angulo ABD tenga
un ́area igual a √2.
Prueba de Selectividad, Andalucia, Modelo 5 2014-2015, MATEMATICAS II
Respuestas
Respuesta dada por:
2
Prueba de Selectividad, Comunidad de Andalucía, Modelo 5 2014-2015, MATEMATICAS II.
a) primero escribimos la recta r de forma paramétrica
r=x=ty=-2tz=0
cualquier punto en la recta tendra que ser de la forma (t,-2t,0), ahora, nos piden que el triangulo formado por los puntos ABC sea rectangulo en A, esto quiere decir que los vectores AB = (2,0,2) y AC = (t,-2t-1,-1) deben ser perpendiculares, por lo tanto su producto escalar es igual a 0. esto es:
⇒
de esta forma, el punto C que buscamos en la recta es C=(1,-2,0).
b) como determinamos anteriormente, el punto D tambien debera tener la forma (t,-2t,0).
No nos queda mas que calcular el area y despejar el valor de t.
Los vectores que forman el triangulo son : AB = (2,0,2) y AD = (t,-2t-1,-1)
∧
=
= =
⇒ ⇒
asi, el punto puede ser de D=(-1,2,0) o D=(-1/9,2/9,0)
a) primero escribimos la recta r de forma paramétrica
r=x=ty=-2tz=0
cualquier punto en la recta tendra que ser de la forma (t,-2t,0), ahora, nos piden que el triangulo formado por los puntos ABC sea rectangulo en A, esto quiere decir que los vectores AB = (2,0,2) y AC = (t,-2t-1,-1) deben ser perpendiculares, por lo tanto su producto escalar es igual a 0. esto es:
⇒
de esta forma, el punto C que buscamos en la recta es C=(1,-2,0).
b) como determinamos anteriormente, el punto D tambien debera tener la forma (t,-2t,0).
No nos queda mas que calcular el area y despejar el valor de t.
Los vectores que forman el triangulo son : AB = (2,0,2) y AD = (t,-2t-1,-1)
∧
=
= =
⇒ ⇒
asi, el punto puede ser de D=(-1,2,0) o D=(-1/9,2/9,0)
Preguntas similares
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años