Respuestas
Respuesta:
Binomio de suma al cubo
Un binomio al cubo (suma) es igual al cubo del primero, más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo.
(a + b)3 = a3 + 3 · a2 · b + 3 · a · b2 + b3
(x + 3)3 = x 3 + 3 · x2 · 3 + 3 · x· 32 + 33 =
= x3 + 9x2 + 27x + 27
Binomio de resta al cubo
Un binomio al cubo (resta) es igual al cubo del primero, menos el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, menos el cubo del segundo.
(a − b)3 = a3 − 3 · a2 · b + 3 · a · b2 − b3
(2x − 3)3 = (2x)3 − 3 · (2x)2 ·3 + 3 · 2x· 32 − 33 =
= 8x 3 − 36 x2 + 54 x − 27
Ejemplos
1
(x + 2)3 = x3 + 3 · x2 · 2 + 3 · x · 22 + 23 =
= x3 + 6x2 + 12x + 8
2
(3x − 2)3 = (3x)3 − 3 · (3x)2 · 2 + 3 · 3x · 22 − 23 =
= 27x 3 − 54x2 + 36x − 8
3
(2x + 5)3 = (2x)3 + 3 · (2x)2 ·5 + 3 · 2x · 52 + 53 =
= 8x3 + 60 x2 + 150 x + 125
Explicación:
Ejemplos de ejercicios con binomios al cuadrado
1 (x + 3)² = x² + 2 · x · 3 + 3² = x ² + 6 x + 9
2 (2x − 3)² = (2x)² − 2 · 2x · 3 + 3² = 4x² − 12x + 9
3 (−2x² + 3)² = (−2x²)² + 2 · (−2x²) · 3 + 3² = 4x4 − 12x² + 9
4 (−2x² − 3y)² = (−2x²)² + 2 · (−2x²) · (−3y) + (−3y)² = 4x4 + 12x²y + 9y²