• Asignatura: Matemáticas
  • Autor: Scar5612whuertasdiaz
  • hace 1 año

DADO EL SIGUIENTE SISTEMA DE ECUACIONES REPRESENTE EN EL PLANO CARTESIANO Y DETERMINE LA SOLUCION
ECUACIONES: 2X-5Y IGUAL A 0
Y Y IGUAL A 4X-8
RESPUESTAS CUAL DE ESTA ES CORRECTA
X IGUAL A 1.82,Y IGUAL A 0,73
X IGUAL A 1,82 Y IGUAL A 0,73
X IGUAL A 0,82 Y IGUAL A 1,73
X IGUAL A 0,82 Y -1,73


Scar5612whuertasdiaz: PORFA AYUNDENMEN ESTO ME TIENE MAREADO
Scar5612whuertasdiaz: LES DOY 100 PUNTOS Y 10 EXTRA SI LO HACEN BIEN

Respuestas

Respuesta dada por: e77198078o
0

Respuesta:

DAME CORONA

Explicación paso a paso:

6 Funciones lineales y cuadraticas 87 ´

6.1 Rectas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Aplicaciones de las funciones lineales . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Parabolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ´ 93

6.4 Aplicaciones de las funciones cuadraticas . . . . . . . . . . . . . . . . . . . . . ´ 94

7 Funciones exponenciales y logar´ıtmicas 99

7.1 Funciones exponenciales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Aplicaciones de las funciones exponenciales . . . . . . . . . . . . . . . . . . . . 102

7.3 Funciones logar´ıtmicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4 Ecuaciones exponenciales y logar´ıtmicas . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Inecuaciones exponenciales y logar´ıtmicas . . . . . . . . . . . . . . . . . . . . . 115

8 Matrices y sistemas de ecuaciones 117

8.1 Operaciones con matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2 Sistemas de ecuaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Solucion de sistemas con calculadora . . . . . . . . . . . . . . . . . . . . . . . . ´ 138

8.4 Matrices inversas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.5 Determinantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9 L´ımites y continuidad 151

9.1 L´ımites a partir de graficos o tablas . . . . . . . . . . . . . . . . . . . . . . . . . ´ 151

10 Derivacion 165 ´

10.1 Derivadas por definicion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ´ 165

10.2 Reglas de derivacion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ´ 167

10.3 Derivada como razon de cambio . . . . . . . . . . . . . . . . . . . . . . . . . . ´ 168

10.4 Reglas del producto y del cociente . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.5 Regla de la cadena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.6 Funciones exponenciales y logar´ıtmicas . . . . . . . . . . . . . . . . . . . . . . 175

10.7 Derivacion impl ´ ´ıcita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.8 Derivacion logar ´ ´ıtmica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10.9 Derivadas de orden superior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

11 Optimizacion 183 ´

11.1 Extremos locales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

11.2 Concavidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

11.3 El criterio de la segunda derivada . . . . . . . . . . . . . . . . . . . . . . . . . . 185

11.4 Extremos absolutos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

11.5 Optimizacion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ´ 187

11.5.1 Problemas de aumento/reduccion . . . . . . . . . . . . . . . . . . . . . ´ 190

11.5.2 Problemas sobre pedidos y lotes de produccion . . . . . . . . . . . . . . ´ 192

11.5.3 Problemas que involucran geometr´ıa . . . . . . . . . . . . . . . . . . . . 195

Preguntas similares