• Asignatura: Física
  • Autor: nievesjaramillof
  • hace 1 año

desde la azotea de un edifició de 20metros de alto se lanza horizontalmente un objeto con una velocidad de 10m/s ¿cuanto tardara en llegar al suelo?¿en que punto cae el objeto?​


nievesjaramillof: ayuden por favor
jamesvalencia737: en que

Respuestas

Respuesta dada por: arkyta
20

El tiempo de vuelo del objeto es de 2 segundos, llegando al suelo en ese instante de tiempo

El alcance horizontal  \bold {     x_{MAX} } es de 20 metros, siendo esta la distancia horizontal a la que cayó el objeto

Se trata de un problema de tiro horizontal

El tiro horizontal consiste en lanzar un cuerpo horizontalmente desde cierta altura.

Teniendo una composición de movimientos en dos dimensiones: uno horizontal sin aceleración, y el otro vertical con aceleración constante hacia abajo, que es la gravedad

Se trata de un movimiento rectilíneo uniforme (MRU) en su trayectoria horizontal o eje horizontal y un movimiento uniformemente variado (MRUV) en su trayectoria vertical o en el eje vertical

Al inicio del movimiento el proyectil solo posee una velocidad horizontal \bold  { V_{x}       } debido a que carece de ángulo de inclinación, por lo tanto no presenta velocidad vertical inicial o sea que \bold  { V_{y}   = 0    }, luego esa velocidad se va incrementando a medida que el proyectil desciende.

Las ecuaciones del tiro horizontal son

Para el eje x (MRU)

\boxed {\bold  {    x =x_{0}   +V_{x}  \ . \ t   }}

Para el eje y (MRUV)

\boxed {\bold  {  V_{y}   =V_{0y} +a_{y}  \ . \ t }}

\boxed {\bold  {    y =y_{0}   +V_{0y}  \ . \ t + \frac{1}{2} \ . \ a_{y}  \ . \ t^{2}  }}

Dado que

\boxed {\bold  { y_{0}= H       }}

\boxed {\bold  { x_{0}= 0       }}

\boxed {\bold  { a_{y}= g       }}

Podemos reescribir como:

Posición

Para el eje x

\boxed {\bold  {    x =x_{0}   +V \ . \ t   }}

Para el eje y

\boxed {\bold  {    y =H + \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

Velocidad

Para el eje x

\boxed {\bold  {  {V_x}   =V_{0x}  }}

\textsf{Donde  } \ \ \ \bold  a_{x} = 0

Para el eje y

\boxed {\bold  {  V_{y}    =g\  . \ t }}

\textsf{Donde  } \ \ \ \bold  a_{y} =g

SOLUCIÓN

Calculamos el tiempo de vuelo o de permanencia en el aire del objeto

\large\textsf{Tomamos un valor de gravedad  } \ \ \ \bold  {g=10 \ \frac{m}{s^{2} }   }

Considerando la altura H desde donde se ha lanzado \bold {H= 20 \ m }

Dado que en el eje Y se tiene un MRUV empleamos la ecuación:

\large\boxed {\bold  {    y =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\bold{y= 0}

\large\boxed {\bold  {    0 =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\large\textsf{Donde despejamos el tiempo }

\boxed {\bold  {    2 \ H  =g \ .\ t^{2}  }}

\boxed {\bold  {  t^{2}      =  \frac{2 \ H}{g }  }}

\boxed {\bold  {  t      = \sqrt{\frac{2 \ H }{g       }    }}}

\boxed {\bold  {  t      = \sqrt{\frac{2\ .  \  20 \ m  }{10 \ \frac{m}{s^{2} }       }    }}}

\boxed {\bold  {  t      = \sqrt{\frac{ 40 \not m  }{10 \ \frac{\not m}{s^{2} }       }    }}}

\boxed {\bold  {  t      = \sqrt{4\ s^{2} }       }   }

\large\boxed {\bold  {  t      =2 \ segundos     }    }

El tiempo de vuelo o de permanencia en el aire del objeto es de 2 segundos

Determinamos a que distancia horizontal cayó el objeto

Dado que en el eje X se tiene un MRU para hallar el alcance o la distancia horizontal recorrida por el proyectil, basta multiplicar la velocidad horizontal inicial por el tiempo de vuelo

\large\boxed {\bold  {  d   =V_{0x}  \ . \ t }}

\boxed {\bold  {  d   =V_{x}  \ . \ t }}

\boxed {\bold  {  d   =10 \ \frac{m}{\not s}  \ . \  2\ \not s }}

\large\boxed {\bold  {  d   = 20 \ metros}}

El alcance horizontal  \bold {     x_{MAX} } es de 20 metros, siendo esta la distancia horizontal a la que cayó el objeto

Se agrega gráfico que evidencia la trayectoria del movimiento

Adjuntos:

nievesjaramillof: es la mejor respuesta grasias
arkyta: Me alegra haberte sido de ayuda :)
luisalbertoricoortiz: hola
uchijasasuke242: hola
Preguntas similares