ayudaaaaaaa por favor 3 hallar el término del lugar 21 en m^36-p^108/m-p^3​

Adjuntos:

Respuestas

Respuesta dada por: princess251111
0

Respuesta:

 {m}^{15}  {p}^{60}

Explicación paso a paso:

al realizar la división encontramos los términos

 {m}^{35} +  {m}^{34} {p}^{3}  +  {m}^{33}   {p}^{6}  +  {m}^{32}  {p}^{9}  +  {m}^{31}  {p}^{12}  +  {m}^{30}  {p}^{15} +  {m}^{29}  {p}^{18}  +  {m}^{28}  {p}^{21}  +  {m}^{27}  {p}^{24}  +  {m}^{26}  {p}^{27}  +  {m}^{25}  {p}^{30}  +  {m}^{24}  {p}^{33}  +  {m}^{23}  {p}^{36}  +  {m}^{22}  {p}^{39}  +  {m}^{21}  {p}^{42}  +  {m}^{20}  {p}^{45}  +  {m}^{19}  {p}^{48}  +  {m}^{18}  {p}^{51}  +  {m}^{17}  {p}^{54}  +  {m}^{16}  {p}^{57}  +  {m}^{15}  {p}^{60}  +  {m}^{14}  {p}^{63}  +  {m}^{13}  {p}^{66}  +  {m}^{12}  {p}^{69}  +  {m}^{11}  {p}^{72}  +  {m}^{10}  {p}^{75}  +  {m}^{9}  {p}^{78}  +  {m}^{8}  {p}^{81}  +  {m}^{7}  {p}^{84}  +  {m}^{6}  {p}^{87}  +  {m}^{5}  {p}^{90}  +  {m}^{4}  {m}^{93}  +  {m}^{3}  {p}^{96}  +  {m}^{2}  {p}^{99 }  +  {m} { p}^{102}  +  {p}^{105}

Preguntas similares