a) 2x (x-1)+(x-3)(x-2)≥(x-3)(x+5)-6+2x²

Respuestas

Respuesta dada por: agusdjpoet47
2
2x\left(x-1\right)+\left(x-3\right)\left(x-2\right)\ge \left(x-3\right)\left(x+5\right)-6+2x^2
\mathrm{Restar\:}\left(x-3\right)\left(x+5\right)-6+2x^2\mathrm{\:de\:ambos\:lados}:
2x\left(x-1\right)+\left(x-3\right)\left(x-2\right)-(\left(x-3\right)\left(x+5\right)-6+2x^2)\ge \left(x-3\right)\left(x+5\right)-6+2x^2-(\left(x-3\right)\left(x+5\right)-6+2x^2)
-2x^2+2\left(x-1\right)x+\left(x-3\right)\left(x-2\right)-\left(x-3\right)\left(x+5\right)+6\ge \:0
-2x^2+2x^2-2x+x^2-5x+6-x^2-2x+15+6\ge \:0
-9x+27\ge \:0
\mathrm{Restar\:}27\mathrm{\:de\:ambos\:lados}:
-9x+27-27\ge \:0-27
-9x\ge \:-27
\mathrm{Multiplicar\:ambos\:lados\:por\:-1\:\left(invierte\:la\:desigualdad\right)}:
\left(-9x\right)\left(-1\right)\le \left(-27\right)\left(-1\right)
9x\le \:27
\mathrm{Dividir\:ambos\:lados\:entre\:}9:
\frac{9x}{9}\le \frac{27}{9}
x\le \:3
\begin{bmatrix}\mathrm{Solucion:}\:&\:x\le \:3\:\\ \:\mathrm{Notacion\:intervalo}&\:(-\infty \:,\:3]\end{bmatrix}
Preguntas similares