• Asignatura: Física
  • Autor: torresplazaanthonyfr
  • hace 2 años

un balon de futbol que reposa sobre una cancha es pateado con un angulo de 45 s/ horizontal da una velocidad inicial de 25 m/s
¿cual es la Altura máxima que alcanza el balón

Respuestas

Respuesta dada por: arkyta
5

El balón alcanza una altura máxima de 15.63 metros

Se trata de un problema de tiro parabólico que consiste en una composición de movimientos en dos dimensiones: uno horizontal sin aceleración, y el otro vertical con aceleración constante hacia abajo, debido a la fuerza de la gravedad. Ambos movimientos poseen velocidad inicial y son independientes uno del otro.

Solución  

Determinamos la altura máxima

La altura máxima que alcanza un proyectil está dada por:

\large\boxed {\bold  {  H_{max}  =\frac{( V_{0})^{2} \ . \ sen^{2} \theta   }{2 \ . \ g  }         }}

Donde

\bold  { H_{max} }  \ \ \ \    \textsf{Es la altura m\'axima del proyectil  }

\bold  { V_{0}}  \ \ \ \    \ \ \  \textsf{ Es la velocidad  inicial }

\bold  { \theta }  \ \ \ \ \  \   \   \ \ \  \textsf{Es el \'angulo de lanzamiento del proyectil  }

\bold  { g }  \ \ \ \ \  \ \ \ \  \    \textsf{Es la gravedad  }

\bold \ \textsf{Considerando el valor de   la gravedad  } \bold  {10 \ \frac{m}{s^{2} }  }

\large \textsf{Reemplazamos y resolvemos  }

\boxed {\bold  {  H_{max}  =\frac{(25 \ \frac{m}{s} )^{2} \ . \ sen^{2} \ (45^o)  }{2 \ . \ 10 \ \frac{m}{s^{2} }  }         }}

\large \textsf{El valor exacto de sen de 45  grados es de  }\bold{ \frac{\sqrt{2} }{2} }

\boxed {\bold  {  H_{max}  =\frac{625\ \frac{m^{2}  }{ s^{2} }  \ .  \ \left(\frac{\sqrt{2} }{2}\right )^{2}   }{ 20\  \frac{m}{\not s^{2} }  }         }}

\boxed {\bold  {  H_{max}  =\frac{625\ \frac{m^{\not 2}  }{\not  s^{2} }  \ .  \ \frac{2}{4}  }{ 20\  \frac{\not m}{\not s^{2} }  }         }}

\boxed {\bold  {  H_{max}  =\frac{625\  \ .  \ \frac{2}{4}  }{ 20\    }  \ m        }}

\boxed {\bold  {  H_{max}  =\frac{ \frac{1250}{4}  }{ 20\    }  \ m        }}

\boxed {\bold  {  H_{max}  =\frac{ 312.50 }{20\    }  \ m        }}

\boxed {\bold  {  H_{max}  = Y_{max}  =  15.625\ metros          }}

\large\boxed {\bold  {  H_{max}  = Y_{max}  =15.63\ metros          }}

La altura máxima que alcanza el balón es de 15.63 metros

Aunque el enunciado no lo pida, siendo clásicas preguntas de examen:

Hallamos el alcance máximo

La ecuación de alcance máximo de un proyectil está dada por:

\large\boxed {\bold  {  x_{max}  =\frac{( V _{0})^{2}  \ . \ sen (2 \theta)   }{ g  }         }}

Donde

\bold  { x_{max} }  \ \ \ \    \textsf{Es el alcance m\'aximo del proyectil  }

\bold  { V_{0}}  \ \ \ \  \ \  \textsf{ Es la velocidad  inicial }

\bold  { \theta } \ \ \ \ \ \ \ \ \    \textsf{Es el \'angulo de lanzamiento del proyectil  }

\bold  { g }  \ \ \ \ \  \ \ \ \    \textsf{Es la gravedad  }

\large \textsf{Reemplazamos y resolvemos  }

\boxed {\bold  {  x_{max}  =\frac{ (25 \ \frac{m}{s} )^{2} \ . \ sen (2 \ 45 ^o)   }{  10 \ \frac{m}{s^{2} } }         }}

\boxed {\bold  {  x_{max}  =\frac{625\ \frac{m^{\not2}  }{\not s^{2}}  \ . \ sen (90 ^o)   }{  10 \ \frac{\not m}{\not s^{2} } }         }}

\large \textsf{El valor exacto de sen de 90 grados es de  }\bold{ 1 }

\boxed {\bold {  x_{max}  =\frac{625   \ . \ \ 1   }{  10  } \ m         }}

\boxed {\bold {  x_{max}  =\frac{625     }{  10  } \ m         }}

\large\boxed {\bold {  x_{max}  =62.50 \ metros         }}

El alcance máximo del proyectil es de 62.50 metros

Obteniéndose con un ángulo de 45° el alcance máximo

Hallamos el tiempo de vuelo

La ecuación del tiempo de vuelo de un proyectil está dada por:

\large\boxed {\bold  {  t_{V}  =\frac{2 \  V _{0}  \ . \ sen \  \theta   }{ g  }         }}

Donde

\bold  { t_{v} }  \ \ \ \ \   \ \ \   \textsf{Es el tiempo de vuelo del proyectil  }

\bold  { V_{0}}  \ \ \ \  \ \  \textsf{ Es la velocidad  inicial }

\bold  { \theta } \ \ \ \ \ \ \ \ \    \textsf{Es el \'angulo de lanzamiento del proyectil  }

\bold  { g }  \ \ \ \ \  \ \ \ \    \textsf{Es la gravedad  }

\large \textsf{Reemplazamos y resolvemos  }

\boxed {\bold  { t _{v}  =\frac{2 \ . \ (25\ \frac{m}{s} ) \ . \ sen  \ (45^o)  }{10 \ \frac{m}{s^{2} }  }         }}

\boxed {\bold  { t _{v}  =\frac{50\ \frac{\not m}{\not s}  \ . \ \frac{\sqrt{2} }{2}  }{10 \ \frac{\not m}{s^{\not 2} }  }         }}

\boxed {\bold  { t _{v}  =\frac{50\   \ . \ \frac{\sqrt{2} }{2}  }{10   }    \ segundos     }}

\boxed {\bold  { t _{v}  =\frac{\not2 \ . \ 25\   \ . \ \frac{\sqrt{2} }{\not 2}  }{10   }    \ segundos     }}

\boxed {\bold  { t _{v}  =\frac{ 25\sqrt{2}   }{10   }    \ segundos     }}

\boxed {\bold  { t _{v}  =3.35553  \ segundos     }}

\large\boxed {\bold  { t _{v}  =3.54  \ segundos     }}

El tiempo de vuelo del proyectil es de 3.54 segundos

Se agrega gráfico que evidencia la trayectoria del movimiento

Adjuntos:
Preguntas similares