Ejercicio 1 . Calificación máxima: 3 puntos. Dados el punto P(−1, 0, 2) y las rectas: r ≡ { x − z = 1 , y − z = −1 , s ≡ {x = 1 + λ , y = λ , z = 3 , se pide:
a) (1 punto) Determinar la posición relativa de r y s.
PRUEBA SELECTIVIDAD MADRID CONVOCATORIA JUN 2012-2013 MATEMATICA II.
Gracias
Respuestas
Respuesta dada por:
1
Acá te dejo la respuesta al ejercicio 1 parte (A) de la prueba de selectividad Madrid convocatoria jun 2012 - 2013 de Matemática II:
Como datos dan el punto P(-1,0,2) y las siguientes rectas:
r: x - z = 1 y - z = -1
s: x = 1 + λ y = λ z = 3
Para obtener cual es la posición relativa de s y r, aplicamos el procedimiento siguiente:
r: = (1,1,1) Pr(1,-1,0)
s: = (1,1,0) Ps(1,0,3)
Ahora determinamos el vector: PrPs = (1-1,0-(-1),3-0) = (0,1,3)
Aplicando producto cruz:
∴ Las rectas r y s se intersectan.
Como datos dan el punto P(-1,0,2) y las siguientes rectas:
r: x - z = 1 y - z = -1
s: x = 1 + λ y = λ z = 3
Para obtener cual es la posición relativa de s y r, aplicamos el procedimiento siguiente:
r: = (1,1,1) Pr(1,-1,0)
s: = (1,1,0) Ps(1,0,3)
Ahora determinamos el vector: PrPs = (1-1,0-(-1),3-0) = (0,1,3)
Aplicando producto cruz:
∴ Las rectas r y s se intersectan.
Preguntas similares
hace 6 años
hace 6 años
hace 9 años