4x+5y=9
-3x+8y=52
Por método de cramer

Respuestas

Respuesta dada por: wernser412
0

Respuesta:    

La solución del sistema por el método de determinantes  es x = -4, y = 5      

     

Explicación paso a paso:    

Método por determinantes (Regla de Cramer):      

4x+5y=9

-3x+8y=52

     

Ahora calculamos el determinante auxiliar:      

|A|= \left[\begin{array}{ccc}4&5\\-3&8\end{array}\right] = (4)(8)-(-3)(5) =32+15=47      

     

Ahora calculamos el determinante auxiliar en x:      

|A_x|= \left[\begin{array}{ccc}9&5\\52&8\end{array}\right] = (9)(8)-(52)(5) = 72-260=-188      

     

Y finalmente calculamos el determinante auxiliar en y:      

|A_y|= \left[\begin{array}{ccc}4&9\\-3&52\end{array}\right] = (4)(52)-(-3)(9) = 208+27=235    

     

Ahora podemos calcular la solución:      

x = \frac{|A_x|}{A} = \frac{-188}{47} =			-4  

y = \frac{|A_y|}{A} = \frac{235}{47} = 			5  

     

Por lo tanto, la solución del sistema por el método de determinantes  es x = -4, y = 5      

Preguntas similares