• Asignatura: Física
  • Autor: ClaudiaJimenez123
  • hace 2 años

Dado el potencial eléctrico de un campo V(x,y,z) = (x²+y²+3z²) Joules/C. Halle el campo eléctrico en el punto (1,2,1)

Respuestas

Respuesta dada por: jaimitoM
11

El vector de campo eléctrico en el punto (1,2,1) vale (-2, -4, -6) N/C y su magnitud es de aproximadamente 7.48 N/C.

Se sabe que el campo eléctrico en un punto no es más que el negativo del gradiente del potencial. Esto es:

\vec{E}=- \nabla V

Que podemos escribir en términos de las derivadas parciales como:

\vec{E} = -\left(\dfrac{\partial V \:}{\partial \:x},\dfrac{\partial V \:}{\partial \:y},\dfrac{\partial V \:}{\partial \:z}\right)

Hallemos cada una de las derivadas:

\dfrac{\partial V \:}{\partial \:x}=\dfrac{\partial \:}{\partial \:x}\left(x^2+y^2+3z^2\right) = 2x

\dfrac{\partial V \:}{\partial \:y}=\dfrac{\partial \:}{\partial \:y}\left(x^2+y^2+3z^2\right) = 2y

\dfrac{\partial V \:}{\partial \:z}=\dfrac{\partial \:}{\partial \:z}\left(x^2+y^2+3z^2\right) = 6z

Por tanto nos queda:

\vec{E} = -\left(2x,2y,6z)

Evaluando el punto (1,2,1):

\vec{E} = -\left(2\cdot 1,2\cdot 2,6\cdot 1)

\vec{E} = -\left(2,4,6)

\boxed{\vec{E} = \left(-2,-4,-6)\ \ \ N/C}

Si quisieramos encontrar su magnitud simplemente hallamos la norma del vector en ese punto:

|\vec{E}| = \sqrt{(-2)^2 + (-4)^2 + (-6)^2}

|\vec{E}| = \sqrt{4+16+36}

|\vec{E}| = \sqrt{56}

|\vec{E}|=\sqrt{2^2\cdot \:2\cdot \:7}

\boxed{|\vec{E}| = 2\sqrt{14}\ \ N/C\approx 7.48\ \ N/C}

R/ El vector de campo eléctrico en el punto (1,2,1) vale (-2, -4, -6) N/C y su magnitud es de aproximadamente 7.48 N/C.

Preguntas similares