• Asignatura: Matemáticas
  • Autor: holamen202125
  • hace 2 años

demuestra que x1 = -8 y x2 = 3, son las raices de g(x) = x2 +5x - 24​

Adjuntos:

Respuestas

Respuesta dada por: MichaelSpymore1
26

Respuesta paso a paso:

Demostración:

Podemos demostrar que x₁ = -8 ; x₂ = 3 son raíces de g(x) = x² + 5x - 24​ si demostramos que resuelven la ecuación de segundo grado haciendo cero el polinomio:

g(x) = x² + 5x - 24​

x² + 5x - 24​ = 0

Sustituimos x₁ = -8 en lugar de la x

(-8)² + 5(-8) - 24​ = 0

64 - 40 - 24 = 0

0 = 0✔️comprobada la primera raíz.

x² + 5x - 24​ = 0

Sustituimos x₂ = 3 en lugar de la x

(3)² + 5(3) - 24​ = 0

9 +15 - 24 = 0

0 = 0✔️comprobada la segunda raíz.

Otra demostración:

Suma de raíces:

Si x₁ = -8 y x₂ = 3, son las raíces de la ecuación de segundo grado:

ax² + bx + c = 0

x² + 5x - 24​ = 0

Entonces la suma de las raíces = -b/a

Tenemos a = 1

Tenemos b = 5

Comprobamos:

Suma = x₁ + x₂ = -8 + 3 = -5

-b/a = -5/1 = -5✔️comprobada la suma de las raíces

Producto de raíces:

Si x₁ = -8 y x₂ = 3, son las raíces de la ecuación de segundo grado:

ax² + bx + c = 0

x² + 5x - 24​ = 0

Entonces el producto de las raíces = c/a

Tenemos a = 1

Tenemos c = -24

Comprobamos:

Producto = x₁ · x₂ = -8 · 3 = -24

c/a = -24/1 = -24✔️comprobado el producto de las raíces

Michael Spymore


Anónimo: Michael... buen día, me ayudarías a ser pfa moderador?... ya cumplo los requisitos... gracias de antemano... y gracias por tu gran ayuda
Anónimo: hay que tener respuestas perfectas y bien explicadas ✅
belenbenitezch: holaa
belenbenitezch: Michael
Preguntas similares