• Asignatura: Física
  • Autor: franciaalvarez3156
  • hace 2 años

Desde un puente se deja caer una piedra que tarda en llegar 4 segundos calcular la altura del puente y la velocidad de la piedra al llegar al agua

Respuestas

Respuesta dada por: arkyta
15

Para un valor de gravedad de 9.8 m/s²

a) La altura del puente es de 78.40 metros

b) La velocidad con que la piedra llega al agua es de 39.2 metros por segundo

Para un valor de gravedad de 10 m/s²

a) La altura del puente es de 80 metros

b) La velocidad con que la piedra llega al agua es de 40 metros por segundo

Se trata de un problema de caída libre

En la caída libre un objeto cae verticalmente desde cierta altura H

Se trata de un movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) en el que la aceleración coincide con el valor de la gravedad. Con aceleración constante hacia abajo, debida al efecto de la gravedad

Donde la velocidad cambia continuamente, dado que el proyectil acelera en su descenso. Y se constata que el cambio de velocidad es el mismo en cada intervalo de tiempo, por ser la aceleración constante

Estableciendo un sistema de referencia donde el eje de coordenadas es vertical, dado que el cuerpo siempre se encuentra sobre el eje Y

Donde no presenta el proyectil velocidad inicial  (\bold  { V_{y}   = 0   ) } dado que parte del reposo, luego esa velocidad se va incrementando a medida que el proyectil desciende.

Inicialmente su posición es   \bold  {y_{0}   = H    }

Las ecuaciones son

\boxed {\bold  {    y ={y_{0}   +V_{0y}  \ . \ t + \frac{1}{2} \ . \ a_{y}  \ . \ t^{2}  }}}

\boxed {\bold  {  {V_{y}   =V_{0y} +a_{y}  \ . \ t }}}

Dado que

\boxed {\bold  { y_{0}= H       }}

\boxed {\bold  { a_{y}= g       }}

Podemos reescribir como:

Posición

\boxed {\bold  {    y ={H + \frac{1}{2} \ . \ g  \ . \ t^{2}  }}}

Velocidad

\boxed {\bold  {  {V_{y}    =g . \ t }}}

\textsf{Donde  } \ \ \ \bold  a_{y} =g

Solución

1 - Para g = 9.8 m/seg²  

a) Hallando la altura del puente

Empleamos la siguiente ecuación de MRUV

\boxed {\bold  {    y =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\bold{y=0}

\boxed {\bold  {     0=H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\large\boxed {\bold  {   H =  \frac{ g  \ . \ t^{2}    }{2}  }}

\boxed {\bold  {   H =  \frac{ 9.8 \ \frac{m}{s^{2} }   \ . \ (4 \ s)^{2}    }{2}  }}

\boxed {\bold  {   H =  \frac{ 9.8 \ \frac{m}{\not s^{2} }   \ . \ 16 \not s^{2}    }{2}  }}

\boxed {\bold  {   H =  \frac{ 9.8     \ . \ 16 \ }{2} metros }}

\boxed {\bold  {   H =  \frac{  156.8 \ }{2} \ metros }}

\large\boxed {\bold  {   H =   78.4 \ metros }}

La altura del puente es de 78.4 metros

b) Hallando la velocidad con que la piedra llega al agua

Tomamos el tiempo de 4 segundos

\boxed {\bold  {  {V_{y}    =g . \ t }}}

\boxed {\bold  {  {V_{y}    =9.8  \  \frac{m}{s^{\not2} }  \  . \  4 \not s    }}}

\large\boxed {\bold  {  {V_{y}    =39.2  \  \frac{m}{s}   }}}

La velocidad con que la piedra llega al agua es de 39.2 metros por segundo

2 - Para g = 10 m/seg²  

a) Hallando la altura del puente

\boxed {\bold  {    y =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\bold{y=0}

\boxed {\bold  {     0=H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\large\boxed {\bold  {   H =  \frac{ g  \ . \ t^{2}    }{2}  }}

\boxed {\bold  {   H =  \frac{ 10 \ \frac{m}{s^{2} }   \ . \ (4 \ s)^{2}    }{2}  }}

\boxed {\bold  {   H =  \frac{ 10 \ \frac{m}{\not s^{2} }   \ . \ 16 \not s^{2}    }{2}  }}

\boxed {\bold  {   H =  \frac{ 10     \ . \ 16  }{2} \ metros }}

\boxed {\bold  {   H =  \frac{  160 }{2} \ metros }}

\large\boxed {\bold  {   H =   80 \ metros }}

La altura del puente es de 80 metros

b) Hallando la velocidad con que la piedra llega al agua

Tomamos el tiempo de 4 segundos

\boxed {\bold  {  {V_{y}    =g . \ t }}}

\boxed {\bold  {  {V_{y}    =10  \  \frac{m}{s^{\not2} }  \  . \ 4 \not s    }}}

\large\boxed {\bold  {  {V_{y}    =40  \  \frac{m}{s}   }}}

La velocidad con que la piedra llega al agua es de 40 metros por segundo


acostaever64: wuat
leidystefanycollazos: súper
janineidrogo: hola
Preguntas similares