A) (³√54 - ³√128) × ³√4
B) (√21 + √7) × (√3 + 1)
C) 5 ³√8 - ³√2 × (³√2 - ³√4)

Respuestas

Respuesta dada por: HombreÁrbol
1
\left(\sqrt[3]{54}-\sqrt[3]{128}\right)\sqrt[3]{4}
\sqrt[3]{54}=\sqrt[3]{2\cdot \:3^3}=\sqrt[3]{2}\sqrt[3]{3^3}=\sqrt[3]{2}\cdot \:3
\sqrt[3]{128}=\sqrt[3]{2^7}=\sqrt[3]{2^6\cdot \:2}=\sqrt[3]{2}\sqrt[3]{2^6}=2^2\sqrt[3]{2}=\sqrt[3]{2}\cdot \:4
=\sqrt[3]{4}\left(\sqrt[3]{2}\cdot \:3-\sqrt[3]{2}\cdot \:4\right)
=\sqrt[3]{4}\left(-\sqrt[3]{2}\right)
=-\sqrt[3]{2}\sqrt[3]{4}=-\sqrt[3]{2}\sqrt[3]{2^2}=-\sqrt[3]{2}\cdot \:2^{2\cdot \frac{1}{3}}=-\sqrt[3]{2}\cdot \:2^{\frac{2}{3}}
=-2


\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{3}+1\right)
=\sqrt{21}\cdot \sqrt{3}+\sqrt{21}\cdot \:1+\sqrt{7}\cdot \sqrt{3}+\sqrt{7}\cdot \:1
=4\sqrt{7}+2\sqrt{21}


5\sqrt[3]{8}-\sqrt[3]{2}\left(\sqrt[3]{2}-\sqrt[3]{4}\right)
=10-\sqrt[3]{2}\left(\sqrt[3]{2}-\sqrt[3]{4}\right)
=10-2^{\frac{2}{3}}+2
=12-2^{\frac{2}{3}}

Preguntas similares