• Asignatura: Matemáticas
  • Autor: alexisguivar123
  • hace 2 años

La fuerza con que se atraen dos cuerpos de masas m, y m, separados "d" metros, es de módulo 6200 N. ¿Con qué fuerza (en módulo) se atraerán si "m," se triplica "mz' se duplica y d'' se duplica?​

Respuestas

Respuesta dada por: Gyeonghui5
1

Solución: En este problema no hay un valor numérico, pero se puede expresar de manera algebraica hasta entender a grandes conceptos que nos quiere dar a entender, colocamos nuestra fórmula.

\displaystyle F=G\frac{{{m}_{1}}\cdot {{m}_{2}}}{{{d}^{2}}}

Ahora coloquemos los datos, aunque si observamos nos daremos cuenta que lo único que cambiará será la distancia, puesto que el problema dice que se incrementa al doble, es decir “2d”.

Por lo que, quedaría en nuestra fórmula.

\displaystyle F=G\frac{{{m}_{1}}\cdot {{m}_{2}}}{{{(2d)}^{2}}}

Resolviendo

\displaystyle F=G\frac{{{m}_{1}}\cdot {{m}_{2}}}{4{{d}^{2}}}=\frac{1}{4}G\frac{{{m}_{1}}\cdot {{m}_{2}}}{{{d}^{2}}}

Si te das cuenta he apartado 1/4 detrás de la constante de gravitación universal, esto es para que nos quede nuevamente la fórmula inicial, y así reemplacemos por la Fuerza “F”.

quedando así.

\displaystyle F=\frac{1}{4}F'

Le que colocado así para evitar confusiones, y como te podrás dar cuenta.

Cuando la distancia aumenta al doble, la fuerza de atracción disminuye en 1/4 de fuerza,

Respuesta dada por: aftsfm
2

Explicación paso a paso:

Se trata de la fuerza gravitacional cuya ecuación es:

F = Gm1m2/d²

Tenemos que:

Gm1m2/d² = 6200

Hallar la nueva fuerza de atracción:

Fa = G(3m1)(2m2)/(2d)²

Fa = 6Gm1m2/4d²

Fa = (3/2)(Gm1m2/d²)

Recordar que Gm1m2/d² = 6200, por tanto:

Fa = (3/2)(6200) = 9300 N

Preguntas similares