un propietario alquila una finca de 105 000 metros cuadrados a tres labradores, distribuyéndola entre los tres proporcionalmente al número de personas de cada familia. la familia del labrador a se compone de 4 personas, la del b de 5 y la del c de 6. calcula la parte de terreno que le corresponde a cada uno.
Respuestas
Respuesta:
A) 28 000 m² B) 35 000 m² y C) 42 000 m
Explicación paso a paso:
Puedes resolverlo de está manera, suma el total de personas y luego divide la cantidad de metros entre la cantidad de personas y ese cociente lo multiplicas por la cantidad de personas de caca familia.
4 + 5 + 6 = 15 105 000 / 15 = 7000 luego
4 * 7000 = 28 000
5 + 7000 = 35 000
6 * 7000 = 42 000 veamos
28 000 + 35 000 + 42 000 = 105 000
Por proporcionalidad
4 / 15 x / 105 000 ⇒ 105 000 * 4 / 15 = 28 000
5 / 15 x / 105 000 ⇒ 105 000 * 5 / 15 = 35 000
6 / 15 x / 105 000 ⇒ 105 000 * 6 / 15 = 42 000
Espero haberte ayudado. Suerte!!, si me dejas una coronita seria de mucha ayuda!. Hasta luego!
A la familia del labrador A le corresponde un total de 28.000 metros cuadrados de terreno.
Cálculo de los metros cuadrados a cada familia
Se nos dice que el propietario alquila una finca de 105.000 m² para sus 3 labradores (A, B y C), y que la distribución del terreno se hace de manera proporcional al numero de personas por familia.
La cantidad de personas por familia es la siguiente:
- Familia labrador A: 4 personas.
- Familia labrador B: 5 personas.
- Familia labrador C: 6 personas.
- Total personas: 4 + 5 + 6 = 15 personas.
Lo primero que vamos a hacer es calcular los metros cuadrados que le corresponden a cada persona, esto se hace dividiendo los m² totales entre el total de personas:
- m² por persona: 105.000 / 15 = 7000 m²
Ahora, para saber la proporción por familia solo debes multiplicar los m² por persona por la cantidad de miembros de cada familia:
- Familia labrador A: 7000 x 4 = 28.000 m²
- Familia labrador B: 7000 x 5 = 35.000 m²
- Familia labrador C: 7000 x 6 = 42.000 m²
Otra consulta sobre metros cuadrados en https://brainly.lat/tarea/2494876
#SPJ2