• Asignatura: Matemáticas
  • Autor: griceldasucup
  • hace 2 años

Log(25-x3)-3Log (4-x)=0

Respuestas

Respuesta dada por: bedoyamarrugojosue
2

Explicación paso a paso:

 log(25 -  {x}^{3} )  - 3 log((4 - x)  = 0 \\  log((25 -  {x}^{3} )  -  log(( {4 - x})^{3} )  = 0 \\  log( \frac{(25 -  {x}^{3}) }{(4 -  {x})^{3} } )  = 0 \\  \frac{25 -  {x}^{3} }{( {4 - x)}^{3} }  =  {10}^{0}  \\  \frac{25 -  {x}^{3} }{( {4 - x)}^{3} }  = 1 \\ 25 -  {x}^{3}  = ( {4 - x)}^{3}  \\ 25 -  {x}^{3}  = 64 - 3( {4)}^{2} x + 3(4)( {x}^{2)}  -  {x}^{3}  \\ 25 -  {x}^{3}  = 64 - 3(16)x + 12 {x}^{2}  -  {x}^{3}  \\ 25 -  {x}^{3}  = 64 - 48x + 12 {x}^{2}  -  {x}^{3}  \\ 25 -  {x}^{3}  - 64 + 48x - 12 {x}^{2}  +  {x}^{3}  = 0 \\  - 39 + 48x  - 12 {x}^{2}  = 0 \\   - 12 {x}^{2}  +  48x - 39 = 0 \\ 12 {x}^{2}  - 48x + 39 = 0 \\ 4 {x}^{2}  - 16x + 13 = 0 \\ x =  \frac{ - b +  -  \sqrt{ { {b}^{2}  - 4ac} } }{2a}  \\ x =  \frac{ - ( - 16) +  -  \sqrt{ {( - 16})^{2}  - 4(4)(13)} }{2 \times 4}  \\ x =  \frac{16 +  -  \sqrt{256 - 208} }{8}  \\ x =  \frac{16 +  -  \sqrt{48} }{8}  \\ x =  \frac{16 +  - 4 \sqrt{3} }{8}  \\ x =  \frac{4(4 - +   \sqrt{3)} }{8}  \\ x =  \frac{4 -  +  \sqrt{3} }{2}  \\ x 1=  \frac{4 +   \sqrt{3} }{2}  \\ x2 =  \frac{4 -  \sqrt{3} }{2}

Preguntas similares