• Asignatura: Química
  • Autor: manuelabeker2
  • hace 1 año

Escribe las ecuaciones de ionización, según la Teoría de Brönsted y Lowry, para: la metilamina, CH3NH2 el ácido fórmico, HCOOH 2 Identifica los pares conjugados en cada caso. Valor: 10 pts

Respuestas

Respuesta dada por: joaoqu
2

En el experimento se usó agua (H2O), metano (CH4), amoniaco (NH3) e hidrógeno (H2). Estas sustancias químicas fueron introducidas dentro de un conjunto sellado estéril de tubos y recipientes de cristal conectados entre sí en circuito cerrado. Uno de los recipientes estaba lleno de agua, con amoniaco, metano e hidrógeno y otro contenía un par de electrodos. Se calentó el agua para que se evaporase, y en otro recipiente los electrodos emitían descargas eléctricas, que eran atravesados por el vapor de agua y los gases provenientes del matraz de evaporación, y que simulaban la atmósfera de la Tierra primitiva. Después, los gases se enfriaban de modo que los gases se condensaran y las gotas volvían al primer recipiente, que se volvía a calentar en un ciclo continuo, creando de esta manera diferentes compuestos orgánicos. El ciclo se interrumpió después de una semana y la solución se analizó mediante cromatografía en papel. Aleksandr Oparin sabía que la Tierra carecía de oxígeno antes de la vida. La evidencia está en que cuando se extraen rocas con hierro de esa época primitiva, el hierro no está en forma de óxido sino en su forma metálica.

 

Stanley Miller trató de probar esta teoría con un aparato sencillo mezclando vapor de agua, metano, amoniaco e hidrógeno. Se pensaba que estos gases eran los que existieron en la atmósfera terrestre en aquel entonces. Para simular el ambiente natural existente entonces utilizó calor, descargas eléctricas naturales (aportes de energía) utilizó electrodos y radiaciones ultravioleta. Con este experimento simuló las condiciones prebióticas y con el aporte de energía de los electrodos logró la obtención de aminoácidos, urea, varios ácidos orgánicos, y otros componentes orgánicos, pero nunca logró la obtención de materia viva, solo algunos de sus componentes.

La historia del experimento

En 19535​ Stanley L. Miller, estudiante de la Universidad de California, le propuso a su director Harold Urey realizar un experimento para contrarrestar la hipótesis de Alexander Oparin y J. B. S. Haldane, según la cual en las condiciones de la Tierra primitiva se habían producido reacciones químicas que condujeron a la formación de compuestos orgánicos a partir de inorgánicos, que posteriormente originaron las primeras formas de vida. Urey pensaba que los resultados no serían concluyentes pero finalmente aceptó la propuesta de Miller; diseñaron un aparato en el que simularon algunas condiciones de la atmósfera de la Tierra primitiva.

En 2008, otros investigadores encontraron el aparato que Miller usó en sus tempranos experimentos y analizaron el material remanente usando técnicas modernas más sensibles. Los experimentos habían incluido la simulación de otros ambientes, no publicados en su momento, como gases liberados en erupciones volcánicas. El análisis posterior encontró 20 aminoácidos que son los componentes de las proteínas y 6 componentes de los ácidos nucleótidos que aparecen en el núcleo de las células y son sustancias elementales para formar la vida, logrando con esto aportar evidencias sólidas que apoyan el desarrollo evolutivo de la vida en la tierra.7​8​9​10​

Química del experimento

La primera fase de las reacciones entre la mezcla de gases del experimento origina cianuro de hidrógeno (HCN), formaldehído (CH2O) y otros compuestos activos intermedios como acetileno, cianoacetileno, etc:

CO2 → CO + O (oxígeno atómico)

CH4 + 2O → CH2O + H2O

CO + NH3 → HCN + H2O

CH4 + NH3 → HCN + 3H2 (proceso BMA)

El formaldehído, amoníaco, y HCN pueden después experimentar una reacción llamada síntesis de Strecker para formar aminoácidos u otras biomoléculas:

CH2O + HCN + NH3 → NH2-CH2-CN + H2O

NH2-CH2-CN + 2H2O → NH3 + NH2-CH2-COOH (glicina)

Además, el agua y el formaldehído pueden responder debido a la reacción de Butlerov para producir varios azúcares como la ribosa.

Impacto

Este experimento, junto a una considerable evidencia geológica, biológica y química, ayuda a sustentar la teoría de que la primera forma de vida se formó de manera espontánea mediante reacciones químicas. Sin embargo, todavía hay científicos que no están convencidos. El astrofísico británico Fred Hoyle –contrario a la teoría del Big Bang y defensor de un universo estacionario, en su momento– comparó la supuesta posibilidad de que la vida apareciera sobre la Tierra como resultante de reacciones químicas con la probabilidad «de que un tornado pasando sobre un montón de chatarra crease un Boeing 747 con los materiales encontrados allí». El consenso entre los biólogos es que la interpretación estadística de Hoyle es errada, y se refieren a este argumento como la falacia de Hoyle.

 

 

Preguntas similares