Sean u=-i+3j y v=αi-2j Encuentre α tal que:
a) u y v sean ortogonales.
b) u y v sean paralelos.
c) El ángulo entre u y v sea π/4
Respuestas
Respuesta dada por:
35
a) Como u y v son ortogonales, el producto escalar entre estos vectores es nulo. Entonces:
![u\cdot v=0\Longrightarrow (-1,3)\cdot(\alpha, -2)=0\\\\
(-1)\cdot\alpha+3\cdot(-2)=0\\\\
-\alpha-6=0\\\\
\boxed{\alpha=-6} u\cdot v=0\Longrightarrow (-1,3)\cdot(\alpha, -2)=0\\\\
(-1)\cdot\alpha+3\cdot(-2)=0\\\\
-\alpha-6=0\\\\
\boxed{\alpha=-6}](https://tex.z-dn.net/?f=u%5Ccdot+v%3D0%5CLongrightarrow+%28-1%2C3%29%5Ccdot%28%5Calpha%2C+-2%29%3D0%5C%5C%5C%5C%0A%28-1%29%5Ccdot%5Calpha%2B3%5Ccdot%28-2%29%3D0%5C%5C%5C%5C%0A-%5Calpha-6%3D0%5C%5C%5C%5C%0A%5Cboxed%7B%5Calpha%3D-6%7D)
----------------------------------------//------------------------------------
b) Como u y v son paralelos, un vector es igual a otro multiplicado por un escalar, esto es:
. Entonces:
![u=tv\Longrightarrow (-1,3)=t(\alpha, -2)\\\\
(-1,3)=(t\alpha,-2t)\\\\
t\alpha=-1~(i)~~~\text{y}~~~-2t=3~(ii) u=tv\Longrightarrow (-1,3)=t(\alpha, -2)\\\\
(-1,3)=(t\alpha,-2t)\\\\
t\alpha=-1~(i)~~~\text{y}~~~-2t=3~(ii)](https://tex.z-dn.net/?f=u%3Dtv%5CLongrightarrow+%28-1%2C3%29%3Dt%28%5Calpha%2C+-2%29%5C%5C%5C%5C%0A%28-1%2C3%29%3D%28t%5Calpha%2C-2t%29%5C%5C%5C%5C%0At%5Calpha%3D-1%7E%28i%29%7E%7E%7E%5Ctext%7By%7D%7E%7E%7E-2t%3D3%7E%28ii%29)
Por (ii):
![-2t=3\iff t=\dfrac{3}{-2}\iff t=-\dfrac{3}{2} -2t=3\iff t=\dfrac{3}{-2}\iff t=-\dfrac{3}{2}](https://tex.z-dn.net/?f=-2t%3D3%5Ciff+t%3D%5Cdfrac%7B3%7D%7B-2%7D%5Ciff+t%3D-%5Cdfrac%7B3%7D%7B2%7D)
Sustituyendo en (i):
![t\alpha=-1\Longrightarrow -\dfrac{3}{2}\cdot \alpha=-1\iff \dfrac{3}{2}\alpha=1\iff\boxed{\alpha=\dfrac{2}{3}} t\alpha=-1\Longrightarrow -\dfrac{3}{2}\cdot \alpha=-1\iff \dfrac{3}{2}\alpha=1\iff\boxed{\alpha=\dfrac{2}{3}}](https://tex.z-dn.net/?f=t%5Calpha%3D-1%5CLongrightarrow+-%5Cdfrac%7B3%7D%7B2%7D%5Ccdot+%5Calpha%3D-1%5Ciff+%5Cdfrac%7B3%7D%7B2%7D%5Calpha%3D1%5Ciff%5Cboxed%7B%5Calpha%3D%5Cdfrac%7B2%7D%7B3%7D%7D)
------------------------------------//-----------------------------
c) Podemos utilizar la fórmula del coseno del ángulo entre dos vectores. Si
es el ángulo entre u y v:
![\cos\theta=\dfrac{u\cdot v}{||u||\cdot||v||} \cos\theta=\dfrac{u\cdot v}{||u||\cdot||v||}](https://tex.z-dn.net/?f=%5Ccos%5Ctheta%3D%5Cdfrac%7Bu%5Ccdot+v%7D%7B%7C%7Cu%7C%7C%5Ccdot%7C%7Cv%7C%7C%7D)
Como
:
![\cos\left(\dfrac{\pi}{4}\right)=\dfrac{(-1,3)\cdot(\alpha,-2)}{\sqrt{(-1)^2+3^2}\cdot\sqrt{\alpha^2+(-2)^2}}\\\\ \dfrac{\sqrt2}{2}=\dfrac{(-1)\cdot\alpha+3\cdot(-2)}{\sqrt{1+9}\cdot\sqrt{\alpha^2+4}}\\\\ \dfrac{\sqrt2}{2}=\dfrac{-\alpha-6}{\sqrt{10}\cdot\sqrt{\alpha^2+4}}\\\\ -\alpha-6=\dfrac{\sqrt2\cdot\sqrt{10}\cdot\sqrt{\alpha^2+4}}{2}\\\\ \alpha+6=-\sqrt{5}\cdot\sqrt{\alpha^2+4}~~(i) \cos\left(\dfrac{\pi}{4}\right)=\dfrac{(-1,3)\cdot(\alpha,-2)}{\sqrt{(-1)^2+3^2}\cdot\sqrt{\alpha^2+(-2)^2}}\\\\ \dfrac{\sqrt2}{2}=\dfrac{(-1)\cdot\alpha+3\cdot(-2)}{\sqrt{1+9}\cdot\sqrt{\alpha^2+4}}\\\\ \dfrac{\sqrt2}{2}=\dfrac{-\alpha-6}{\sqrt{10}\cdot\sqrt{\alpha^2+4}}\\\\ -\alpha-6=\dfrac{\sqrt2\cdot\sqrt{10}\cdot\sqrt{\alpha^2+4}}{2}\\\\ \alpha+6=-\sqrt{5}\cdot\sqrt{\alpha^2+4}~~(i)](https://tex.z-dn.net/?f=%5Ccos%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7B4%7D%5Cright%29%3D%5Cdfrac%7B%28-1%2C3%29%5Ccdot%28%5Calpha%2C-2%29%7D%7B%5Csqrt%7B%28-1%29%5E2%2B3%5E2%7D%5Ccdot%5Csqrt%7B%5Calpha%5E2%2B%28-2%29%5E2%7D%7D%5C%5C%5C%5C+%5Cdfrac%7B%5Csqrt2%7D%7B2%7D%3D%5Cdfrac%7B%28-1%29%5Ccdot%5Calpha%2B3%5Ccdot%28-2%29%7D%7B%5Csqrt%7B1%2B9%7D%5Ccdot%5Csqrt%7B%5Calpha%5E2%2B4%7D%7D%5C%5C%5C%5C+%5Cdfrac%7B%5Csqrt2%7D%7B2%7D%3D%5Cdfrac%7B-%5Calpha-6%7D%7B%5Csqrt%7B10%7D%5Ccdot%5Csqrt%7B%5Calpha%5E2%2B4%7D%7D%5C%5C%5C%5C+-%5Calpha-6%3D%5Cdfrac%7B%5Csqrt2%5Ccdot%5Csqrt%7B10%7D%5Ccdot%5Csqrt%7B%5Calpha%5E2%2B4%7D%7D%7B2%7D%5C%5C%5C%5C+%5Calpha%2B6%3D-%5Csqrt%7B5%7D%5Ccdot%5Csqrt%7B%5Calpha%5E2%2B4%7D%7E%7E%28i%29)
Vamos a elevar ambos lados de la ecuación (i) al cuadrado:
![(\alpha+6)^2=(-\sqrt{5}\cdot\sqrt{\alpha^2+4})^2\\\\
\alpha^2+12\alpha+36=5(\alpha^2+4) (\alpha+6)^2=(-\sqrt{5}\cdot\sqrt{\alpha^2+4})^2\\\\
\alpha^2+12\alpha+36=5(\alpha^2+4)](https://tex.z-dn.net/?f=%28%5Calpha%2B6%29%5E2%3D%28-%5Csqrt%7B5%7D%5Ccdot%5Csqrt%7B%5Calpha%5E2%2B4%7D%29%5E2%5C%5C%5C%5C%0A%5Calpha%5E2%2B12%5Calpha%2B36%3D5%28%5Calpha%5E2%2B4%29)
![\alpha^2+12\alpha+36=5\alpha^2+20\\\\
4\alpha^2-12\alpha-16=0\\\\
\alpha^2-3\alpha-4=0\\\\\\
\Delta=b^2-4ac=(-3)^2-4\cdot1\cdot(-4)=9+16=25\\\\\\
\alpha=\dfrac{-b\pm\sqrt{\Delta}}{2a}=\dfrac{-(-3)\pm\sqrt{25}}{2\cdot1}=\dfrac{3\pm5}{2}\\\\
\alpha=\dfrac{3+5}{2}=\dfrac{8}{2}~~~\text{o}~~~\alpha=\dfrac{3-5}{2}=\dfrac{-2}{2}\\\\
\alpha=4~~~\text{o}~~~\alpha=-1 \alpha^2+12\alpha+36=5\alpha^2+20\\\\
4\alpha^2-12\alpha-16=0\\\\
\alpha^2-3\alpha-4=0\\\\\\
\Delta=b^2-4ac=(-3)^2-4\cdot1\cdot(-4)=9+16=25\\\\\\
\alpha=\dfrac{-b\pm\sqrt{\Delta}}{2a}=\dfrac{-(-3)\pm\sqrt{25}}{2\cdot1}=\dfrac{3\pm5}{2}\\\\
\alpha=\dfrac{3+5}{2}=\dfrac{8}{2}~~~\text{o}~~~\alpha=\dfrac{3-5}{2}=\dfrac{-2}{2}\\\\
\alpha=4~~~\text{o}~~~\alpha=-1](https://tex.z-dn.net/?f=%5Calpha%5E2%2B12%5Calpha%2B36%3D5%5Calpha%5E2%2B20%5C%5C%5C%5C%0A4%5Calpha%5E2-12%5Calpha-16%3D0%5C%5C%5C%5C%0A%5Calpha%5E2-3%5Calpha-4%3D0%5C%5C%5C%5C%5C%5C%0A%5CDelta%3Db%5E2-4ac%3D%28-3%29%5E2-4%5Ccdot1%5Ccdot%28-4%29%3D9%2B16%3D25%5C%5C%5C%5C%5C%5C%0A%5Calpha%3D%5Cdfrac%7B-b%5Cpm%5Csqrt%7B%5CDelta%7D%7D%7B2a%7D%3D%5Cdfrac%7B-%28-3%29%5Cpm%5Csqrt%7B25%7D%7D%7B2%5Ccdot1%7D%3D%5Cdfrac%7B3%5Cpm5%7D%7B2%7D%5C%5C%5C%5C%0A%5Calpha%3D%5Cdfrac%7B3%2B5%7D%7B2%7D%3D%5Cdfrac%7B8%7D%7B2%7D%7E%7E%7E%5Ctext%7Bo%7D%7E%7E%7E%5Calpha%3D%5Cdfrac%7B3-5%7D%7B2%7D%3D%5Cdfrac%7B-2%7D%7B2%7D%5C%5C%5C%5C%0A%5Calpha%3D4%7E%7E%7E%5Ctext%7Bo%7D%7E%7E%7E%5Calpha%3D-1)
Sustituyendo en (i) los valores de
:
- Para
:
![\alpha+6=-\sqrt{5}\cdot\sqrt{\alpha^2+4}\\\\
4+6=-\sqrt{5}\cdot\sqrt{4^2+4}\\\\
10=-\sqrt{5}\cdot\sqrt{16+4}\\\\
10=-\sqrt{5}\cdot\sqrt{20}\\\\
10=-\sqrt{100}\\\\
10=-10\to\text{\¡Absurdo!}
\alpha+6=-\sqrt{5}\cdot\sqrt{\alpha^2+4}\\\\
4+6=-\sqrt{5}\cdot\sqrt{4^2+4}\\\\
10=-\sqrt{5}\cdot\sqrt{16+4}\\\\
10=-\sqrt{5}\cdot\sqrt{20}\\\\
10=-\sqrt{100}\\\\
10=-10\to\text{\¡Absurdo!}](https://tex.z-dn.net/?f=%5Calpha%2B6%3D-%5Csqrt%7B5%7D%5Ccdot%5Csqrt%7B%5Calpha%5E2%2B4%7D%5C%5C%5C%5C%0A4%2B6%3D-%5Csqrt%7B5%7D%5Ccdot%5Csqrt%7B4%5E2%2B4%7D%5C%5C%5C%5C%0A10%3D-%5Csqrt%7B5%7D%5Ccdot%5Csqrt%7B16%2B4%7D%5C%5C%5C%5C%0A10%3D-%5Csqrt%7B5%7D%5Ccdot%5Csqrt%7B20%7D%5C%5C%5C%5C%0A10%3D-%5Csqrt%7B100%7D%5C%5C%5C%5C%0A10%3D-10%5Cto%5Ctext%7B%5C%C2%A1Absurdo%21%7D%0A%0A%0A)
- Para
:
![\alpha+6=-\sqrt{5}\cdot\sqrt{\alpha^2+4}\\\\ (-1)+6=-\sqrt{5}\cdot\sqrt{(-1)^2+4}\\\\ 5=-\sqrt{5}\cdot\sqrt{1+4}\\\\ 5=-\sqrt{5}\cdot\sqrt{5}\\\\ 5=-\sqrt{25}\\\\ 5=-5\to\text{\¡Absurdo!} \alpha+6=-\sqrt{5}\cdot\sqrt{\alpha^2+4}\\\\ (-1)+6=-\sqrt{5}\cdot\sqrt{(-1)^2+4}\\\\ 5=-\sqrt{5}\cdot\sqrt{1+4}\\\\ 5=-\sqrt{5}\cdot\sqrt{5}\\\\ 5=-\sqrt{25}\\\\ 5=-5\to\text{\¡Absurdo!}](https://tex.z-dn.net/?f=%5Calpha%2B6%3D-%5Csqrt%7B5%7D%5Ccdot%5Csqrt%7B%5Calpha%5E2%2B4%7D%5C%5C%5C%5C+%28-1%29%2B6%3D-%5Csqrt%7B5%7D%5Ccdot%5Csqrt%7B%28-1%29%5E2%2B4%7D%5C%5C%5C%5C+5%3D-%5Csqrt%7B5%7D%5Ccdot%5Csqrt%7B1%2B4%7D%5C%5C%5C%5C+5%3D-%5Csqrt%7B5%7D%5Ccdot%5Csqrt%7B5%7D%5C%5C%5C%5C+5%3D-%5Csqrt%7B25%7D%5C%5C%5C%5C+5%3D-5%5Cto%5Ctext%7B%5C%C2%A1Absurdo%21%7D+)
Por lo tanto, no existe un valor real alfa de tal manera que el ángulo entre u y v sea π/4.
----------------------------------------//------------------------------------
b) Como u y v son paralelos, un vector es igual a otro multiplicado por un escalar, esto es:
Por (ii):
Sustituyendo en (i):
------------------------------------//-----------------------------
c) Podemos utilizar la fórmula del coseno del ángulo entre dos vectores. Si
Como
Vamos a elevar ambos lados de la ecuación (i) al cuadrado:
Sustituyendo en (i) los valores de
- Para
- Para
Por lo tanto, no existe un valor real alfa de tal manera que el ángulo entre u y v sea π/4.
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años