Hallar la variación de volumen que experimenta un cubo, de
arista de 20 cm, cuando ésta aumenta 0.2 cm su longitud.
FraankXD:
es cálculo diferencial?
V = x^3
dV = 3x^2 dx
Como el cubo mide de lado 20 cm
x = 20
y aumenta .2 cm en longitud
dx = 0.2
Tenemos que el incremento de volumen es
dV = 3x^2 dx = 3 * (20)^2 * 0.2 = 240 cm^3
Respuestas
Respuesta dada por:
32
Respuesta:
Explicación:
Como el cubo mide de lado 20 cm
y aumenta .2 cm en longitud
Tenemos que el incremento de volumen es
Respuesta dada por:
11
Tenemos que la variación de volumen que experimenta el cubo, al aumentar la arista 0.2 cm, viene siendo de 240 cm³.
¿Cómo se calcula el volumen de un cubo?
Tenemos que el volumen de un cubo se define como la arista al cubo, tal que:
V = a³
Resolución
Para resolver este problema se aplicará la definición de derivada, lo que se hará será derivar el volumen del cubo en función de su arista, tal que:
dV/da = 3a²
dV = (3a²)·da
Sustituimos los datos y tenemos que:
dV = (3(20 cm)²)·(0.2 cm)
dV = 240 cm³
Por tanto, tenemos que la variación de volumen que experimenta el cubo viene siendo de 240 cm³.
Mira más sobre el cubo en https://brainly.lat/tarea/10362537.
Adjuntos:
Preguntas similares
hace 2 años
hace 4 años
hace 4 años