se está bombeando aire a un globo esferico a una velocidad constante de 3cm3/s ¿que tan rapido esta cambiando el radio cuando el volumen es de 60 cm3?

Respuestas

Respuesta dada por: Akenaton
0
Volumen de una esfera = (4/3)(π*R³)

Para: V = 60 cm³

60 cm³ = (4/3)(π*R³)

R³ = [(60 cm³)(3)]/[4π]

R³ = [(180)/(4π)]

R³ = 14.3239 cm³

R = ∛(14.3239 cm³)

R = 2.428588 cm

dV/dt = 3 cm³/s ; dr/dt = ?

dV/dt = 3(4/3)(π*R²)(dr/dt)

3 cm³/s = 4(π*R²)(dr/dt)

3 cm³/s = 4[π*(2.428588 cm)²](dr/dt)

3 cm³/s = 74.116952 cm²(dr/dt)

dr/dt = [3 cm³/s]/[74.116952 cm²]

dr/dt = 0.04047 cm/s

El radio varia a razon de 0.04047 cm/s

 



 







Respuesta dada por: marin1696
0

Respuesta:

Volumen de una esfera = (4/3)(π*R³)

Para: V = 60 cm³

60 cm³ = (4/3)(π*R³)

R³ = [(60 cm³)(3)]/[4π]

R³ = [(180)/(4π)]

R³ = 14.3239 cm³

R = ∛(14.3239 cm³)

R = 2.428588 cm

dV/dt = 3 cm³/s ; dr/dt = ?

dV/dt = 3(4/3)(π*R²)(dr/dt)

3 cm³/s = 4(π*R²)(dr/dt)

3 cm³/s = 4[π*(2.428588 cm)²](dr/dt)

3 cm³/s = 74.116952 cm²(dr/dt)

dr/dt = [3 cm³/s]/[74.116952 cm²]

dr/dt = 0.04047 cm/s

El radio varia a razon de 0.04047 cm/s

 

Explicación paso a paso:

Preguntas similares