Respuestas
Respuesta dada por:
0
En el primer ejercicio la C y la D estan al reves, las demas estan bien.
En el segundo la respuesta es la b o la d no estoy segura
En el tercer ejercicio estan bien
En el segundo la respuesta es la b o la d no estoy segura
En el tercer ejercicio estan bien
Naye1:
pero quiero la respuestaaa
Respuesta dada por:
1
P(x) = 3X² + 2X - 1; Q(x) = 6X³ + 13X² + 4X - 3
P(x) + Q(x) = (3X² + 2X - 1) + (6X³ + 13X² + 4X - 3)
P(x) + Q(x) = 3X² + 2X - 1 + 6X³ + 13X² + 4X - 3
P(x) + Q(x) = 6X³ + 16X² + 6X - 4
Q(x) - P(x) = (6X³ + 13X² + 4X - 3) - (3X² + 2X - 1)
Q(x) - P(x) = 6X³ + 13X² + 4X - 3 - 3X² - 2X + 1
Q(x) - P(x) = 6X³ + 10X² - 2X - 2
P(x)*Q(x) = [(6X³ + 13X² + 4X - 3)(3X² + 2X - 1)]
P(x)*Q(x) = [18X^5 + 12X^4 - 6X³ + 39X^4 + 26X³ - 13X² + 12X³ + 8X² - 4X -9X² - 6X + 3]
P(x)*Q(x) = 18X^5 + 51X^4 + 32X³ - 14X² - 6X + 3
[P(x)]² = [3X² + 2X - 1]² = (3X² + 2X - 1)(3X² + 2X - 1)
[P(x)]² = [9X^4 + 6X³ - 3X² + 6X³ + 4X² - 2X - 3X² - 2X + 1]
[P(x)]² = [9X^4 + 12X³ - 2X² - 4X + 1]
2) (X^6 - 1)/(X - 1)
(X^6 - 1) = (X³ - 1)(X³ - 1)
(X³ + 1) = (X + 1)(X² - X + 1)
(X³ - 1) = (X - 1)(X² + X + 1)
(X^6 - 1) = [(X + 1)(X² - X + 1)(X - 1)(X² + X + 1)]
(X^6 - 1)/(X - 1) = [(X + 1)(X² - X + 1)(X - 1)(X² + X + 1)]/(X - 1)
[(X + 1)(X² - X + 1)(X - 1)(X² + X + 1)]/(X - 1) (Cancelo el (X - 1) arriba y abajo)
(X + 1)(X² - X + 1)(X² + X + 1) = (X^6 - 1)/(X - 1)
Vamos por partes:
(X + 1)(X² - X + 1) = X³ - X² + X + X² - X² + 1 = X³ + 1
(X³ + 1)(X² + X + 1) = X^5 + X^4 + X³ + X² + X + 1
= X^5 + X^4 + X² + X² + X + 1
(X^6 - 1)/(X - 1) = X^5 + X^4 + X² + X² + X + 1
3)
a) X^4 - 1 = (X² - 1)(X² + 1)
(X² - 1) = (X + 1)(X - 1)
X^4 - 1 = (X + 1)(X - 1)(X² + 1)
b) X^4 - 10X³ + 35X² - 50X + 24
X^4 - 10X³ + 35X² - 50X + 24 (Divido entre X - 1)
X^4 - 10X³ + 35X² - 50X + 24 = (X - 1)(X³ + 26X - 9X² - 24)
(X³ + 26X - 9X² - 24) (Divido entre X - 2)
X³ + 26X - 9X² - 24 = (X - 2)(X² - 7X + 12)
(X² - 7X + 12) = (X - 3)(X - 4)
X^4 - 10X³ + 35X² - 50X + 24 = (X - 1)(X - 2)(X - 3)(X - 4)
c) X³ + 5X² + X + 5
(X³ + 5X²) + (X + 5)
X²(X + 5) + (X + 5)
(X + 5)(X² + 1)
X³ + 5X² + X + 5 = (X + 5)(X² + 1)
d) 12X³ - 16X² - 20X + 8
12X³ - 16X² - 20X + 8
4(3X³ - 4X² - 5X + 8)
4[(3X³ - 4X² - 5X + 8) Divido entre (X + 1)]
4[(X + 1)(3X² - 7X + 2)]
(3X² - 7X + 2) = 3X² - X - 6X + 2
(3X² - X) + (-6X + 2)
X(3X - 1) - 2(3X - 1)
(X - 2)(3X - 1)
(3X² - 7X + 2) = (X - 2)(3X - 1)
4[(X + 1)(X - 2)(3X - 1)]
12X³ - 16X² - 20X + 8 = 4[(X + 1)(X - 2)(3X - 1)]
P(x) + Q(x) = (3X² + 2X - 1) + (6X³ + 13X² + 4X - 3)
P(x) + Q(x) = 3X² + 2X - 1 + 6X³ + 13X² + 4X - 3
P(x) + Q(x) = 6X³ + 16X² + 6X - 4
Q(x) - P(x) = (6X³ + 13X² + 4X - 3) - (3X² + 2X - 1)
Q(x) - P(x) = 6X³ + 13X² + 4X - 3 - 3X² - 2X + 1
Q(x) - P(x) = 6X³ + 10X² - 2X - 2
P(x)*Q(x) = [(6X³ + 13X² + 4X - 3)(3X² + 2X - 1)]
P(x)*Q(x) = [18X^5 + 12X^4 - 6X³ + 39X^4 + 26X³ - 13X² + 12X³ + 8X² - 4X -9X² - 6X + 3]
P(x)*Q(x) = 18X^5 + 51X^4 + 32X³ - 14X² - 6X + 3
[P(x)]² = [3X² + 2X - 1]² = (3X² + 2X - 1)(3X² + 2X - 1)
[P(x)]² = [9X^4 + 6X³ - 3X² + 6X³ + 4X² - 2X - 3X² - 2X + 1]
[P(x)]² = [9X^4 + 12X³ - 2X² - 4X + 1]
2) (X^6 - 1)/(X - 1)
(X^6 - 1) = (X³ - 1)(X³ - 1)
(X³ + 1) = (X + 1)(X² - X + 1)
(X³ - 1) = (X - 1)(X² + X + 1)
(X^6 - 1) = [(X + 1)(X² - X + 1)(X - 1)(X² + X + 1)]
(X^6 - 1)/(X - 1) = [(X + 1)(X² - X + 1)(X - 1)(X² + X + 1)]/(X - 1)
[(X + 1)(X² - X + 1)(X - 1)(X² + X + 1)]/(X - 1) (Cancelo el (X - 1) arriba y abajo)
(X + 1)(X² - X + 1)(X² + X + 1) = (X^6 - 1)/(X - 1)
Vamos por partes:
(X + 1)(X² - X + 1) = X³ - X² + X + X² - X² + 1 = X³ + 1
(X³ + 1)(X² + X + 1) = X^5 + X^4 + X³ + X² + X + 1
= X^5 + X^4 + X² + X² + X + 1
(X^6 - 1)/(X - 1) = X^5 + X^4 + X² + X² + X + 1
3)
a) X^4 - 1 = (X² - 1)(X² + 1)
(X² - 1) = (X + 1)(X - 1)
X^4 - 1 = (X + 1)(X - 1)(X² + 1)
b) X^4 - 10X³ + 35X² - 50X + 24
X^4 - 10X³ + 35X² - 50X + 24 (Divido entre X - 1)
X^4 - 10X³ + 35X² - 50X + 24 = (X - 1)(X³ + 26X - 9X² - 24)
(X³ + 26X - 9X² - 24) (Divido entre X - 2)
X³ + 26X - 9X² - 24 = (X - 2)(X² - 7X + 12)
(X² - 7X + 12) = (X - 3)(X - 4)
X^4 - 10X³ + 35X² - 50X + 24 = (X - 1)(X - 2)(X - 3)(X - 4)
c) X³ + 5X² + X + 5
(X³ + 5X²) + (X + 5)
X²(X + 5) + (X + 5)
(X + 5)(X² + 1)
X³ + 5X² + X + 5 = (X + 5)(X² + 1)
d) 12X³ - 16X² - 20X + 8
12X³ - 16X² - 20X + 8
4(3X³ - 4X² - 5X + 8)
4[(3X³ - 4X² - 5X + 8) Divido entre (X + 1)]
4[(X + 1)(3X² - 7X + 2)]
(3X² - 7X + 2) = 3X² - X - 6X + 2
(3X² - X) + (-6X + 2)
X(3X - 1) - 2(3X - 1)
(X - 2)(3X - 1)
(3X² - 7X + 2) = (X - 2)(3X - 1)
4[(X + 1)(X - 2)(3X - 1)]
12X³ - 16X² - 20X + 8 = 4[(X + 1)(X - 2)(3X - 1)]
Preguntas similares
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años