Bases fundamentales de la geometria no euclidiana

Respuestas

Respuesta dada por: htebzil070900
2

Se denomina geometría no euclidiana o no euclídea, a cualquier forma de geometría cuyos postulados y propiedades difieren en algún punto de los establecidos por Euclides en su tratado Elementos. No existe un solo tipo de geometría no euclídea, sino muchos, aunque si se restringe la discusión a espacios homogéneos, en los que la curvatura del espacio es la misma en cada punto, en los que los puntos del espacio son indistinguibles pueden distinguirse tres tipos de geometrías:

La geometría euclidiana satisface los cinco postulados de Euclides y tiene curvatura cero (es decir se supone en un espacio plano por lo que la suma de los tres ángulos interiores de un triángulo da siempre 180°.).La geometría hiperbólica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura negativa (en esta geometría, por ejemplo, la suma de los tres ángulos interiores de un triángulo es inferior a 180°).La geometría elíptica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura positiva (en esta geometría, por ejemplo, la suma de los tres ángulos interiores de un triángulo es mayor a 180°).

Todos estos son casos particulares de geometrías riemannianas, en los que la curvatura es constante, si se admite la posibilidad de que la curvatura intrínseca de la geometría varíe de un punto a otro se tiene un caso de geometría riemanniana general, como sucede en la teoría de la relatividad general donde la gravedad causa una curvatura no homogénea en el espacio-tiempo, siendo mayor la curvatura cerca de las concentraciones de masa, lo cual es percibido como un campo gravitatorio atractivo.


fmcorazo: Se denomina geometria euclidiana
htebzil070900: son bases de geometria y de ambas tanto no euclidiana como euclidiana
Respuesta dada por: juliana20meneses
3
EL MÉTODO DEDUCTIVO: El método deductivo es el utilizado en la ciencia y principalmente en la geometría. Este método consiste en conectar un conjunto de conocimientos que se aceptan como verdaderos, para obtener nuevas proposiciones que son consecuencia lógica de las anteriores. El método deductivo también es llamado método axiomático. El método deductivo se basa en:  Conceptos no definidos: La geometría necesita desarrollar su propio vocabulario y para desarrollarlo comenzamos con unas palabras que se obtienen de la vida cotidiana. Términos no definidos: Punto, Recta, Plano.  Las definiciones: Necesitamos conocer el significado exacto de los términos que utilizamos en geometría y para ello utilizamos las definiciones. Ejemplo: La bisectriz de un ángulo es la semirrecta que tiene su origen en el vértice del ángulo y lo divide en dos ángulos congruentes.  Los Postulados. (Axiomas) Son proposiciones que se aceptan como verdaderas sin demostrarlas.  Teoremas: Son proposiciones que para aceptarlas como verdaderas deben ser demostradas a partir de postulados, definiciones o teoremas ya demostrados, siguiendo una deducción lógica. En un teorema se deben distinguir dos elementos fundamentales:
 LA HIPÓTESIS Y LA TESIS. La hipótesis son los datos que se dan en el enunciado del teorema. La tesis es la conclusión a la que debemos llegar. PUNTO: Es un término no definido en geometría. La huella que deja un alfiler en una hoja nos da la idea de punto. Los puntos los denominaremos por letras mayúsculas.

Preguntas similares