Encontrar el Producto de dos binomios cuya variable común tiene coeficientes diferentes. 1) (2a + 6) (a + 2) 2) (7x – 2) (x + 5) 3) (m² - 4) (5m² - 3) 4) (3p² - 7) (8p² + 2) 5) (2z + 5) (6z + 1)

Ayúdenme por favor :(​

Respuestas

Respuesta dada por: juanbaezj777
5

Respuesta:(x + 4) (x + 10)

(y + 3) (y + 8)

(k + 6) (k – 2/3)

(2x + 7) (2x - 2)

(raíz cuadrada de x + 6) (raíz cuadrada de x -5)

(z2 + 11) (z2 + 1)

(x3 - 3) (x3 + 10)

(2y2 + 8) (2y2 – 6)

(x2 + 3) (x2 - 7)

(-2 - y) (- 9 - y)

x

y

k

2x

raíz cuadrada de x

z2

x3

2y2

x2

-y

+4; +10

+3; +8

+6; -2/3

+7; -2

+6; -5

+11; +1

-3; +10

+8; -6

+3; -7

-2; -9

Si a los ejemplos 3, 5, 7, 9 se les aplica el procedimiento para multiplicar dos binomios, se tiene:

3. (k + 6)(k – 2/3)

= k2 – 2/3 k + 6k – 4

= k2 + [(-2/3) + (+6)]k – 4

= k2 + 16/3 k - 4

5. (raíz cuadrada de x + 6)(raíz cuadrada de x - 5)

= (raíz cuadrada de x)2 - 5raíz cuadrada de x + 6raíz cuadrada de x - 30

= x + [(-5) + (+6)] raíz cuadrada de x - 30

= x + raíz cuadrada de x - 30

7. (x3 - 3)(x3 + 10)

= (x3)2 + 10x3 – 3x3 – 30

= x6 + [(+10) + (-3)]x3 – 30

= x6 + 7x3 – 30

9. (x2 + 3)(x2 - 7)

= (x2)2 – 7x2 + 3x2 – 21

= x4 + [(-7) + (+3)]x2 – 21

= x4 – 4x2 - 21

Observamos que este tipo de productos se efectúa del mismo modo en que se multiplican dos binomios cualesquiera; sin embargo, esto lo hacemos tan frecuentemente que es válido tener una regla adecuada, la cual se obtiene observando detenidamente los ejemplos anteriores.

(x + a) (x + b) = x2 + (a + b)x + ab

Por consiguiente,

El producto de dos binomios con un término común es un trinomio cuyo primer término es el cuadrado del término común, su segundo término es el producto de la suma de los términos no comunes por el término común y el tercer término es el producto de los términos no comunes.

Observa el desarrollo de los tres pasos en los siguientes ejemplos.

Para (x + 1) (x - 9)

1er. Paso (x + 1) (x - 9) = x2

El cuadrado del término común

2o. Paso (x + 1) (x - 9) = x2 + (+1 -9)x

El producto de la suma de los términos no comunes por el término común.

3er. Paso (x + 1) (x - 9) = x2 -8x + [(1)(-9)]

El producto de los términos no comunes.

(x + 1) (x - 9) = x2 – 8x – 9

Para (y2 - 8 )(y2 - 2 )

5 3

1er. Paso: (y2 - 8 )(y2 - 2 ) = (y2)2

5 3

El cuadrado del término comñun.

2o. Paso (y2 - 8 )(y2 - 2 ) = y4 + [(-

8 ) + (-

2 )] y2

5 3 5 3

El producto de la suma de los términos no comunes por el término común.

3er. Paso (y2 - 8 )(y2 - 2 ) = y4 -

34 y2 + (-

8 )(-

2 )

5 3 15 5 3

El producto de los términos no comunes.

(y2 - 8 )( y2 - 2 ) = y4 -

34 y2 +

16

5 3 15 15

Ahora apliquemos los tres pasos de la regla:

(mx - 8) (mx + 3) = m2x – 5mx – 24

(p2a3 + 10) (p2a3 + 33) = p4a6 + 43p2a3 + 330

(y - 6) (y - 3) = y2 – 9y + 18 espero te irva almenos de algo

Explicación paso a paso:


juanbaezj777: meresco coronita
Respuesta dada por: dayronvaldiviaramire
1

Respuesta:

que demonios es muy larga ese problema


juanbaezj777: si
Preguntas similares