alguien que me ayude a racionalizar esta operacion

Adjuntos:

Respuestas

Respuesta dada por: CarlosMath
1
\dfrac{1}{1+\sqrt{2}-\sqrt{3}}=\dfrac{1}{\left(1+\sqrt{2}\right)-\sqrt{3}}\\ \\ \\
\dfrac{1}{1+\sqrt{2}-\sqrt{3}}\equiv \dfrac{\left(1+\sqrt{2}\right)+\sqrt{3}}{\left[\left(1+\sqrt{2}\right)-\sqrt{3}\right]\left[\left(1+\sqrt{2}\right)+\sqrt{3}\right]}\\ \\ \\
\dfrac{1}{1+\sqrt{2}-\sqrt{3}}\equiv \dfrac{1+\sqrt{2}+\sqrt{3}}{\left(1+\sqrt{2}\right)^2-\sqrt{3}^2}

\dfrac{1}{1+\sqrt{2}-\sqrt{3}}\equiv \dfrac{1+\sqrt{2}+\sqrt{3}}{\left(3+2\sqrt{2}\right)-3}\\ \\ \\
\dfrac{1}{1+\sqrt{2}-\sqrt{3}}\equiv \dfrac{1+\sqrt{2}+\sqrt{3}}{2\sqrt{2}}\\ \\ \\
\dfrac{1}{1+\sqrt{2}-\sqrt{3}}\equiv \dfrac{\left(1+\sqrt{2}+\sqrt{3}\right)\cdot \sqrt{2}}{2\sqrt{2}\cdot \sqrt{2}}\\ \\ \\
\boxed{\dfrac{1}{1+\sqrt{2}-\sqrt{3}}\equiv \dfrac{\sqrt{2}+2+\sqrt{6}}{4}}
Preguntas similares