Determine el radio de la circunferencia cuyo centro es el origen y pasa por el punto (2,3)
arkyta:
Falta el valor del punto. Edita
Respuestas
Respuesta dada por:
9
El radio de la circunferencia es de √13 unidades expresado en forma exacta o de aproximadamente 3.61 unidades expresado en forma decimal
Solución
La ecuación ordinaria de la circunferencia está dada por:
Donde (h, k) son las las traslaciones horizontal h y vertical k que representan el centro del círculo. Y donde la distancia entre el centro y cada punto del círculo es igual a la longitud del radio.
Para este ejercicio conocemos que la circunferencia tiene centro en el origen, por tanto
Si el centro de la circunferencia coincide con el eje de coordenadas, la ecuación queda reducida a:
Hallamos el radio de la circunferencia que pasa por C (0,0) y el punto A (2,3)
Empleamos la fórmula de la distancia entre puntos para hallar el radio
Sustituimos los valores de los puntos en la fórmula de la distancia
En forma exacta:
En forma decimal:
Luego el radio de la circunferencia es de √13 unidades expresado en forma exacta o de aproximadamente 3.61 unidades expresado en forma decimal
Conociendo el radio podemos determinar la ecuación de la circunferencia
Concluyendo que la circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro
Adjuntos:
Preguntas similares
hace 2 años
hace 2 años
hace 2 años
hace 5 años
hace 5 años
hace 5 años
hace 7 años