Respuestas
e atribuyen a Tales varios descubrimientos matemáticos registrados en los Elementos de Euclides: la definición I. 17 y las proposiciones I. 5, I. 15, I. 26 y III. 31.
Semicírculo que ilustra un teorema de Tales.Asimismo es muy conocida la leyenda acerca de un método de comparación de sombras que Tales habría utilizado para medir la altura de las pirámides egipcias: el milesio se percató de que se podría saber la altura exacta de las pirámides midiendo la sombra de estas en el momento del día en que su sombra era más o menos de igual tamaño que su cuerpo. Este método fue aplicado luego a otros fines prácticos de la navegación.8 Se supone además que Tales conocía ya muchas de las bases de la geometría, como el hecho de que cualquier diámetro de un círculo lo dividiría en partes idénticas, que un triángulo isósceles tiene por fuerza dos ángulos iguales en su base o las propiedades relacionales entre los ángulos que se forman al cortar dos paralelas por una línea recta perpendicular.
Los egipcios habían aplicado algunos de estos conocimientos para la división y parcelación de sus terrenos. Esta necesidad surgió a raíz de que el Nilo, con sus constantes crecidas, borraba las líneas divisorias de los campos de cultivo, por lo que era necesaria una manera de medir de nuevo el terreno. Mas, según los pocos datos con los que se cuenta, Tales se habría dedicado en Grecia mucho menos al espacio (a las superficies) y mucho más a las líneas y a las curvas, alcanzando así su geometría un mayor grado de complejidad y abstracción.