• Asignatura: Matemáticas
  • Autor: segundoguainan
  • hace 2 años

cual es la mediana de 6,4,16,10,20,10 alguien que me ayude por favor es para hoy ​

Respuestas

Respuesta dada por: mayelimartinez2007
0

Respuesta:

10

Explicación paso a paso:

Los pasos para sacar la mediana son:

Ordena todos los números del más pequeño al más grande.

Encuentra el número del medio del conjunto.

Si tienes una cantidad impar: Tacha el número al final de la izquierda, después el primero a la derecha, y repite el proceso hasta quedarte con un número, que será la mediana.

Respuesta dada por: cristal1726
0

Respuesta:

Explicación paso a paso:

En primer lugar ordenamos de menor a mayor

 

2, 2, 3, 5, 5, 5, 6, 8, 9.

 

Como la serie tiene un número impar de medidas la mediana es la puntuación central de la misma

 

{Me = 5}

 

3, 5, 2, 6, 5, 9, 5, 2, 8, 6.

 

Ordenamos de menor a mayor

 

2, 2, 3, 5, 5, 5, 6, 6, 8, 9.

 

Como la serie tiene un número par de puntuaciones la mediana es la media entre las dos puntuaciones centrales

 

{Me = \displaystyle\frac{5+5}{2}=5}

 

10, 13, 4, 7, 8, 11 10, 16, 18, 12, 3, 6, 9, 9, 4, 13, 20, 7, 5, 10, 17, 10, 16, 14, 8, 18

 

3, 4, 4, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 11, 12, 13, 13, 14, 16, 16, 17, 18, 18, 20

 

{Me = \displaystyle\frac{10+10}{2}=10}

 

2Tabular y calcular mediana de la siguiente serie de números: 5, 3, 6, 5, 4, 5, 2, 8, 6, 5, 4, 8, 3, 4, 5, 4, 8, 2, 5, 4.

 

{x_{i}} {f_{i}} {F_{i}}

2 2 2

3 2 4

4 5 9

5 6 15

6 2 17

8 3 20

20  

 

Para calcular la mediana dividimos {N=20} entre 2 y vemos que la casilla de las {F_{i}} donde se encuentra 10 corresponde a 5

 

{\displaystyle\frac{20}{2} = 10 \ \ \ \Longrightarrow \ \ \ Me = 5}

 

3Hallar la mediana de la distribución estadística que viene dada por la siguiente tabla:

 

{f_{i}}

[10, 15) 3

[15, 20) 5

[20, 25) 7

[25, 30) 4

[30, 35) 2

 

En primer lugar añadimos otra columna en la tabla con la frecuencia acumulada {(F_{i})}

 

En la primera casilla colocamos la primera frecuencia absoluta. En la segunda casilla sumamos el valor de la frecuencia acumulada anterior más la frecuencia absoluta correspondiente y así sucesivamente hasta la última, que tiene que se igual a {N=21}

 

{f_{i}} {F_{i}}

[10, 15) 3 3

[15, 20) 5 8

[20, 25) 7 15

[25, 30) 4 19

[30, 35) 2 21

21  

Preguntas similares