• Asignatura: Física
  • Autor: azaleaguilera
  • hace 2 años

un leopardo se lanza desde un acantilado de 20m de altura con una velocidad de 18 m/seg ¿Aque distancia del acantilado se cayó?​

Respuestas

Respuesta dada por: arkyta
1

El alcance horizontal  \bold {     x_{MAX} } es de 36 metros, siendo esta la distancia del acantilado a la que cayó el leopardo

Se trata de un problema de tiro horizontal

El tiro horizontal consiste en lanzar un cuerpo horizontalmente desde cierta altura.

Teniendo una composición de movimientos en dos dimensiones: uno horizontal sin aceleración, y el otro vertical con aceleración constante hacia abajo, que es la gravedad

Se trata de un movimiento rectilíneo uniforme (MRU) en su trayectoria horizontal o eje horizontal y un movimiento uniformemente variado (MRUV) en su trayectoria vertical o en el eje vertical

Al inicio del movimiento el proyectil solo posee una velocidad horizontal \bold  { V_{x}       } debido a que carece de ángulo de inclinación, por lo tanto no presenta velocidad vertical inicial o sea que \bold  { V_{y}   = 0    }, luego esa velocidad se va incrementando a medida que el proyectil desciende.

Las ecuaciones del tiro horizontal son

Para el eje x (MRU)

\boxed {\bold  {    x =x_{0}   +V_{x}  \ . \ t   }}

Para el eje y (MRUV)

\boxed {\bold  {  V_{y}   =V_{0y} +a_{y}  \ . \ t }}

\boxed {\bold  {    y =y_{0}   +V_{0y}  \ . \ t + \frac{1}{2} \ . \ a_{y}  \ . \ t^{2}  }}

Dado que

\boxed {\bold  { y_{0}= H       }}

\boxed {\bold  { x_{0}= 0       }}

\boxed {\bold  { a_{y}= g       }}

Podemos reescribir como:

Posición

Para el eje x

\boxed {\bold  {    x =x_{0}   +V \ . \ t   }}

Para el eje y

\boxed {\bold  {    y =H + \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

Velocidad

Para el eje x

\boxed {\bold  {  {V_x}   =V_{0x}  }}

\textsf{Donde  } \ \ \ \bold  a_{x} = 0

Para el eje y

\boxed {\bold  {  V_{y}    =g\  . \ t }}

\textsf{Donde  } \ \ \ \bold  a_{y} =g

SOLUCIÓN

Primero calculamos el tiempo de vuelo o de permanencia en el aire del leopardo

\large\textsf{Tomamos un valor de gravedad  } \ \ \ \bold  {g=10 \ \frac{m}{s^{2} }   }

Considerando la altura H desde donde se ha lanzado \bold {H= 20 \ m }

\large\boxed {\bold  {    y =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\bold{y= 0}

\large\boxed {\bold  {    0 =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\large\textsf{Donde despejamos el tiempo }

\boxed {\bold  {    2 \ H  =g \ .\ t^{2}  }}

\boxed {\bold  {  t^{2}      =  \frac{2 \ H}{g }  }}

\boxed {\bold  {  t      = \sqrt{\frac{2 \ H }{g       }    }}}

\boxed {\bold  {  t      = \sqrt{\frac{2\ .  \  20 \ m  }{10 \ \frac{m}{s^{2} }       }    }}}

\boxed {\bold  {  t      = \sqrt{\frac{  40 \not m  }{10 \ \frac{\not m}{s^{2} }       }    }}}

\boxed {\bold  {  t      = \sqrt{4 \ s^{2} }       }   }

\large\boxed {\bold  {  t      = 2 \ segundos     }    }

El tiempo de vuelo o de permanencia en el aire del leopardo es de 2 segundos

Determinamos a que distancia del acantilado el leopardo cayó

Dado que en el eje X se tiene un MRU para hallar el alcance o la distancia horizontal recorrida por el proyectil, basta multiplicar la velocidad horizontal inicial por el tiempo de vuelo

\large\boxed {\bold  {  d   =V_{0x}  \ . \ t }}

\boxed {\bold  {  d   =V_{x}  \ . \ t }}

\boxed {\bold  {  d   =18 \ \frac{m}{\not s}  \ . \  2\ \not s }}

\large\boxed {\bold  {  d   = 36 \ metros}}

El alcance horizontal  \bold {     x_{MAX} } es de 36 metros, siendo esta la distancia del acantilado a la que cayó el leopardo

Se agrega gráfico que evidencia la trayectoria del movimiento

Adjuntos:
Preguntas similares