A partir de esta información, José interpreta que la cantidad de agua que hay en el depósito es proporcional al tiempo transcurrido, ya que esta cantidad aumenta a medida que el tiempo aumenta. ¿Cómo le explicarías a José que la cantidad de agua que hay en el depósito no es proporcional al tiempo transcurrido? Utiliza ejemplos para realizar tu explicación.​


mirianzambranomoreno: hola
radiodoblev: pero en la respuesta por qué te salió 3333
radiodoblev: me puedes esplicar
mirianzambranomoreno: no

Respuestas

Respuesta dada por: Laalisson12
230

Respuesta:

Mira we, no es proporcional por.....

Explicación paso a paso:

2/6 = 0.3333

3/8 = 0.375

4/10 = 0.4

5/12 = 0.416666

y como vez sus resultados no son proporcionales o como dicen no son iguales


mendozaventuracesar: gracias (•‿•)
lunanicolle25: uta mano gracias
lunanicolle25: mana creo
Khrizthel01: nah pos :v muchas gracias!!!! >:D
cynthiatenazoa74: hola
cynthiatenazoa74: disculpa pero como lo resolvieron
cynthiatenazoa74: es que aurita estoy en exámen de matemática y no se me pueden ayudar por favor
cynthiatenazoa74: seria de mucha ayuda
borjaquinechep: el pepe ............. ete sech..............el pepe.............ete sech ..............el pepe...............ete sech xd
tuunico4morronal: algien q m diga cual es la respuesta x fis
Respuesta dada por: luismgalli
24

La cantidad de agua que hay en el depósito no es proporcional al tiempo transcurrido porque la proporción es diferente

Explicación paso a paso:

Proporcionalidad directa es cuando las magnitudes involucradas en la relación aumenta o disminuyen en la misma proporción, es decir si, si una aumenta la otra también y viceversa en el mismo monto

La razón es una relación entre dos valores o variables y la proporción es la igualdad entre dos razones.

Proporción = Cantidad de agua / Tiempo

P₁ = 6/2 =3

P₂ = 8/3 = 2,67

P₃ = 10/4 = 2,5

P₄ = 12/5 = 2,4

Ve mas en: brainly.lat/tarea/12997745

Adjuntos:
Preguntas similares