Respuestas
Respuesta dada por:
1
El valor de *x* y *y* del sistema de ecuaciones es:
x= 15
y=12
Datos:
x²-y²= 81
x+y= 27
Explicación:
El método que se usará para hallar la solución del sistema será el de sustitución:
1. Se despeja x de la segunda ecuación:
x= 27-y
2. Se reemplaza en la primera ecuación y se resuelve:
(27-y)² -y²= 81
27²-2*27y +y²-y²=81
729-54y=81
54y= 729-81
54y=648
y=648/54
y=12
3. Se reemplaza el valor de y en la segunda ecuación:
x=27-y
x=27-12
x=15
Respuesta dada por:
0
Respuesta:
21
Explicación paso a paso:
Usaremos el teorema de Pitágoras, tomemos los triángulos por separado, primero el de la izquierda
100 = 65 + x²
100 - 65 = x²
36 = x²
√36 = x
6 = x
Ahora con el triángulo de la derecha
289 = 64 + x²
289 - 64 = x²
225 = x²
√225 = x
15 = x
Entonces x + y
6 + 15 = 21
Preguntas similares
hace 2 años
hace 2 años
hace 4 años
hace 4 años
hace 7 años
hace 7 años
hace 7 años