• Asignatura: Química
  • Autor: gael2000
  • hace 2 años

Se disuelven 5.076 g de una sal de Cu2+ (63.55 g/mol) en una fiola de 500 mL. Una alícuota de 105.50 mL de esta disolución se analiza añadiendo algunos gramos de KI, y valorando el I2 liberado con 18. 76 mL de Na2S2O3 0.059213 M.


2 Cu2+(ac) + 4I-(ac) -> 2CuI(s) + I2

2 S2O32-(ac) + I2 -> S4O62-(ac) + 2I-(ac)


a. Indique si las reacciones presentadas están balanceadas o no.

Las dos reacciones presentes es tan correctamente balanceadas.

b.Hallar el porcentaje en masa de cobre en la sal.


c.Cuando se trabaja con soluciones con yodo, ¿qué indicador se usa? Indique el tipo y el nombre del indicador.

Respuestas

Respuesta dada por: lumar173
0

En base a las reacciones dadas, para la determinación de cobre en una muestra de sal  por Yodometria, se tienen los siguientes resultados:

a) Las reacciones están balanceadas.

b) El porcentaje en masa de cobre en la sal es de 6 %.

c) El indicador que se usa, cuando se trabaja con soluciones de yodo, es el Almidón.

Datos:

5,076 g de sal de Cu⁺²  (63,55 g/mol) ...... Disuelta hasta 500 ml

105,5 ml de la disolución

                  ↓

Se añade KI y se valora el I₂ liberado con 18,76 ml de Na₂S₂O₃ 0,059213 M

Reacciones:

2 Cu⁺²(ac)  +  4I⁻(ac)   →  2CuI(s)  +  I₂

2 S₂O₃⁻²(ac)  +  I₂   →   S₄O₆⁻²(ac)  +  2 I⁻ (ac)

a) Las reacciones están balanceadas.

Se usaron 18,76 ml de Na₂S₂O₃ 0,059213 M para titular el yodo liberado, entonces:

18,76 × 10⁻³ L × 0,059213 mol / L = 1,11 × 10⁻³ mol Na₂S₂O₃

De la ecuación química tenemos que 2 moles de Na₂S₂O₃ reaccionan con 1 mol de yodo ( I₂ ),

2 moles Na₂S₂O₃           .........  1 mol I₂

1,11 × 10⁻³ mol Na₂S₂O₃  .........      X

X = ( 1,11 × 10⁻³ mol Na₂S₂O₃ × 1 mol I₂ ) / 2 mol Na₂S₂O₃ = 0,5 × 10⁻³ mol I₂

Conociendo la cantidad de I₂ liberado, podemos calcular la cantidad de Cu que reaccionó con KI:

2 moles de Cu⁺² .......... 1 mol I₂

           X              .......... 0,5 × 10⁻³ mol I₂

X = (0,5 × 10⁻³ mol I₂ × 2 moles de Cu⁺²) / 1 mol I₂ = 0,001 mol Cu⁺²

Se tienen 0,001 mol Cu⁺² en 105,5 ml de solución, entonces:

( 0,001 mol Cu⁺² / 105,5 ml solución ) × 500 ml solución = 0,0047 mol Cu⁺²

0,0047 mol Cu⁺² × 63,55 g/mol = 0,3012 g Cu⁺²

% en masa = (0,3012 g / 5,076 g ) × 100 = 6 % m/m

b) El porcentaje en masa de cobre en la sal es de 6 %.

Preguntas similares