Explique las características de la función afín.
Ayudaa, tengo hasta mañana las 8 de la mañana y no lo encuentro
Respuestas
Respuesta:
Una función afín es una función polinómica de primer grado que no pasa por el origen de coordenadas, o sea, por el punto (0,0). Los escalares m y n son diferentes de 0. La m es la pendiente de la recta. La pendiente es la inclinación con respecto al eje de abscisas (eje X)
Respuesta:
Una función afín es una función polinómica de primer grado que no pasa por el origen de coordenadas, o sea, por el punto (0,0). Los escalares m y n son diferentes de 0. La m es la pendiente de la recta. La pendiente es la inclinación con respecto al eje de abscisas (eje X).
Características de la función afín
La función afín y la función lineal
Toda función afín:
y = m * x + k
tiene asociada una función lineal:
y = m * x
1.- Modifica los parámetros m y k para observar la relación que hay entre una función afín y su correspondiente función lineal.
¿Cuántas funciones afines tienen asociadas la misma función lineal? ¿cómo son las rectas que las representan?
Cálculo de la pendiente de una recta
La función:
y = m * x + k
representa una recta. El parámetro m se denomina pendiente de la recta porque indica su mayor o menor inclinación, igual que en la función lineal.
2.- Modifica los parámetros y mueve el punto amarillo.
Observa que el cociente de las diferencias de coordenadas entre dos puntos cualesquiera (longitud del segmento verde entre la del azul) es siempre la pendiente de la recta.
¿Qué valor pondrías al segmento azul para que resulte fácil determinar la pendiente?
Representación de la pendiente de una recta
Dada la función:
y = m * x + k
si se aumenta en una unidad el valor de x, la función se incrementa en el valor de la pendiente:
3.- Modifica los parámetros y observa que la longitud del segmento amarillo es el valor de la pendiente.
La pendiente es el valor que aumenta o disminuye la función cuando la x aumenta una unidad.
Comprueba que todas las rectas que son paraleles entre sí tienen la misma pendiente.
Representación de la ordenada en el origen de una recta
El parámetro k se llama ordenada en el origen de la función afín porque indica el valor de la función cuando x vale cero.
4.- Comprueba que todas las funciones afines pasan por los puntos de coordenadas (0,k).
Comprueba que las rectas que pasan por el mismo punto del eje y tienen el mismo valor de k y se diferencian sólo en su pendiente.
Simetría respecto del eje Y
5.- Busca la relación que debe existir entre dos funciones afines para que sus rectas sean simétricas respecto del eje de ordenadas. (Moviendo el punto naranja se obtienen sus simétricos respecto del eje Y).
Simetría respecto del eje X
6.- Busca la relación que debe existir entre dos funciones afines para que sus rectas sean simétricas respecto del eje de abscisas. (Moviendo el punto naranja se obtienen sus simétricos respecto del eje Y).