Respuestas
Respuesta dada por:
8
solucion:
Empleamos el Teorema de Gauss para encontrar las raíces (valores que toma "x" y anulan el polinomio). Como el polinomio es de grado 3, tiene 3 raíces como máximo.
Las posibles raíces racionales son, en este caso, los divisores del término independiente.
Posibles raíces = D(6) = {±1 , ±2 , ±3 , ±6}
Empleamos la Regla de Ruffini, para realizar la división (x³ - 7x + 6)÷(x - α), donde "α" es una de las posibles raíces. Si la división da resto cero, "α" es raíz del polinomio y forma parte de su factorización. Una vez encontrada una raíz, se continua la división de forma sucesiva hasta encontrar todas las raíces.
. . ..| .1 . . 0 . . -7 . . . 6
. 1 .| .↓ . . 1 . . 1 . . . -6
–––|––––––––––––––––
. . .| .1 . . .1 . . -6 . . . 0 ← Resto 0 ==> 1 es raíz
. 2.| .↓ . . .2 . . .6
–––|––––––––––––––––
. . .| .1 . . .3 . . .0 ← Resto 0 ==> 2 es raíz
.-3.| .↓ . . .-3
–––|––––––––––––––––
. . .| .1 . . .0 ← Resto 0 ==> -3 es raíz
Las raíces son 1 , 2 , -3. Por lo tanto, la factorización es
▬▬▬▬▬▬▬▬▬
(x -1)·(x - 2)·(x + 3) ◄ RESPUESTA
▬▬▬▬▬▬▬▬▬
《Espero haberte ayudado 》♤
Empleamos el Teorema de Gauss para encontrar las raíces (valores que toma "x" y anulan el polinomio). Como el polinomio es de grado 3, tiene 3 raíces como máximo.
Las posibles raíces racionales son, en este caso, los divisores del término independiente.
Posibles raíces = D(6) = {±1 , ±2 , ±3 , ±6}
Empleamos la Regla de Ruffini, para realizar la división (x³ - 7x + 6)÷(x - α), donde "α" es una de las posibles raíces. Si la división da resto cero, "α" es raíz del polinomio y forma parte de su factorización. Una vez encontrada una raíz, se continua la división de forma sucesiva hasta encontrar todas las raíces.
. . ..| .1 . . 0 . . -7 . . . 6
. 1 .| .↓ . . 1 . . 1 . . . -6
–––|––––––––––––––––
. . .| .1 . . .1 . . -6 . . . 0 ← Resto 0 ==> 1 es raíz
. 2.| .↓ . . .2 . . .6
–––|––––––––––––––––
. . .| .1 . . .3 . . .0 ← Resto 0 ==> 2 es raíz
.-3.| .↓ . . .-3
–––|––––––––––––––––
. . .| .1 . . .0 ← Resto 0 ==> -3 es raíz
Las raíces son 1 , 2 , -3. Por lo tanto, la factorización es
▬▬▬▬▬▬▬▬▬
(x -1)·(x - 2)·(x + 3) ◄ RESPUESTA
▬▬▬▬▬▬▬▬▬
《Espero haberte ayudado 》♤
wwwluis45m:
ya modifique mi respuesta paso a paso
a) 2x²+6x-2÷2x-4
a)x³-2x²÷2x-4
b)x²+3x-2÷2x-4
c)2x³-6x²+8÷2x-4
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años