como resolver el siguiente te problema con valores iniciales.

Adjuntos:

CarlosMath: transformada de Laplace
mvallesm: pero osea resolver el problema
seeker17: usando algún método en particular?
mvallesm: edo
seeker17: Entonces aún no sabes Transformada de Laplce?

Respuestas

Respuesta dada por: CarlosMath
1
\dfrac{d^2x}{dt^2}+6\dfrac{dx}{dt}+10x=25\cos 4t\\ \\ \\
\mathcal{L}\left\{\dfrac{d^2x}{dt^2}+6\dfrac{dx}{dt}+10x\right\}=\mathcal{L}\left\{25\cos 4t\right\}\\ \\ \\
\mathcal{L}\left\{\dfrac{d^2x}{dt^2}\right\}+6\mathcal{L}\left\{\dfrac{dx}{dt}\right\}+10\mathcal{L}\left\{x\right\}=25\mathcal{L}\left\{\cos 4t\right\}


\left[s^2\mathcal{L}\left\{x\right\}-sx(0^-)-x'(0^-)\right]+6\left[s\mathcal{L}\left\{x\right\}-x(0^-)\right]+10\mathcal{L}\left\{x\right\}=\dfrac{25s}{s^2+4^2}\\ \\ \\
(s^2+6s+10)\mathcal{L}\{x\}-\dfrac{s}{2}-3=\dfrac{25s}{s^2+16}\\ \\ \\
\mathcal{L}\{x\}=\dfrac{\dfrac{25s}{s^2+16}+\dfrac{s}{2}+3}{s^2+6s+10}


\mathcal{L}\{x\}=\dfrac{\frac{38}{51}s}{s^2+6s+10}+\dfrac{\frac{28}{51}}{s^2+6s+10}-\dfrac{\frac{25}{102}s}{s^2+16}+\dfrac{\frac{200}{51}}{s^2+16}\\ \\ \\
x(t)=\dfrac{38}{51}\mathcal{L}^{-1}\left\{\dfrac{s}{s^2+6s+10}\right\}+\dfrac{28}{51}\mathcal{L}^{-1}\left\{\dfrac{1}{s^2+6s+10}\right\}-\cdots\\ \\
-\dfrac{25}{102}\mathcal{L}^{-1}\left\{\dfrac{s}{s^2+16}\right\}+\dfrac{200}{51}\mathcal{L}^{-1}\left\{\dfrac{1}{s^2+16}\right\}\\ \\ \\


x(t)=\dfrac{38}{51}\mathcal{L}^{-1}\left\{\dfrac{s}{(s+3)^2+1}\right\}+\dfrac{28}{51}\mathcal{L}^{-1}\left\{\dfrac{1}{(s+3)^2+1}\right\}-\cdots\\ \\
-\dfrac{25}{102}\cos(4t)+\dfrac{50}{51}\sin(4t)


x(t)=\dfrac{38}{51}\mathcal{L}^{-1}\left\{\dfrac{s+3}{(s+3)^2+1}\right\}-\dfrac{86}{51}\mathcal{L}^{-1}\left\{\dfrac{1}{(s+3)^2+1}\right\}-\cdots\\ \\
-\dfrac{25}{102}\cos(4t)+\dfrac{50}{51}\sin(4t)\\ \\ \\
\texttt{Recordando la propiedad de traslaci\'on}\\ \\
\boxed{\mathcal{L}^{-1}\left\{F(s-\omega)\right\}=e^{\omega t}\mathcal{L}^{-1}\left\{F(s)\right\}}


x(t)=\dfrac{38e^{-3t}}{51}\mathcal{L}^{-1}\left\{\dfrac{s}{s^2+1}\right\}-\dfrac{86e^{-3t}}{51}\mathcal{L}^{-1}\left\{\dfrac{1}{s^2+1}\right\}-\cdots\\\\
\cdots-\dfrac{25}{102}\cos(4t)+\dfrac{50}{51}\sin(4t)\\ \\ \\ \\
\boxed{x(t)=\dfrac{38e^{-3t}}{51}\cos t-\dfrac{86e^{-3t}}{51}\sin t-\dfrac{25}{102}\cos(4t)+\dfrac{50}{51}\sin(4t)}
Preguntas similares