Escribe el valor de verdad de:
~p ^ a (p = q)​

Respuestas

Respuesta dada por: kizone
0

Respuesta:

Las rosas son rojas y las violetas son azules” y “Juan es inteligente o estudia cada noche”.

OPERACIONES LÓGICAS BÁSICAS

Conjunción, p ∧ q

Dos proposiciones arbitrarias se combinan mediante la palabra “y” para formar una proposición compuesta que se denomina conjunción de las proposiciones originales. Se escribe así:

p ∧ q

que se lee “p y q”, denota la conjunción de p y q. Puesto que p ∧ q es una proposición, tiene un valor de verdad, que depende sólo de los valores de verdad de p y q.

En específico: Si p y q son verdaderas, entonces p ∧ q es verdadera; en otro caso, p ∧ q es falsa.

A continuación se muestra la tabla de verdad de la conjunción.

Disyunción, p ∨ q

Dos proposiciones arbitrarias se combinan mediante el conectivo “o” para formar una proposición compuesta denominada disyunción de las proposiciones originales. Se escribe así,

p ∨ q

que se lee “p o q”, denota la disyunción de p y q. El valor de verdad de p ∨ q sólo depende de los valores de verdad de p y q como sigue.

Si p y q son falsas, entonces p ∨ q es falsa; en otro caso , p ∨ q es verdadera.

Su tabla de verdad es la siguiente

Negación, ¬p

Dada cualquier proposición p, es posible formar otra proposición, denominada negación de p, al escribir “no es verdad que. . .” o “Es falso que. . .” antes de p o, de ser posible, al insertar en p la palabra “no”. El símbolo de la negación de p se lee “no p”, se denota por

¬p

El valor de verdad de ¬p depende del valor de verdad de p como sigue:

Si p es verdadera, entonces ¬p es falsa; y si p es falsa, entonces ¬p es verdadera.

El valor de verdad de ¬p tiene una forma equivalente de definición por medio de la siguiente tabla de verdad. Así, el valor de verdad de la negación de p siempre es el opuesto al valor de verdad de p.

La notación lógica para los conectivos “y”, “o” y “no” aún no está completamente estandarizada. Por ejemplo, en algunos textos se usa:

p & q, p · q o pq para p ∧ q

p + q para p ∨ q

p , .p o ∼ p para ¬p

PROPOSICIONES Y TABLAS DE VERDAD

Uno de los métodos para construir una tabla de verdad usando la proposición ¬(p ∧ ¬ q) es el siguiente.

a) Primero se construye la tabla de verdad que se muestra en la figura.

Es decir, primero se enumeran todas las variables y las combinaciones de sus valores de verdad. También hay un renglón final identificado por “Paso”. L

Preguntas similares