identidades trigonométricas​

Adjuntos:

Respuestas

Respuesta dada por: MaqueraRivasLuisArtu
0

Hola!

Explicación paso a paso:

Solución 01 :

2(1 -  { \cos }^{2}  \alpha ) +  { \cos}^{2}  \alpha =  1 +  { \sin}^{2}  \alpha   \\2( { \sin}^{2}  \alpha ) +   { \cos}^{2}  \alpha =  1 +  { \sin}^{2}  \alpha \\ 2 { \sin}^{2}  \alpha -  { \sin}^{2}  \alpha + { \cos }^{2}  \alpha = 1 \\ { \sin}^{2}  \alpha + { \cos }^{2}  \alpha = 1 \\ 1 = 1

Solución 02:

(1 +   \sin \alpha )(1 - \sin \alpha ) =  { \cos }^{2}  \alpha  \\  {1}^{2}  -  {( \sin \alpha  )}^{2}  = { \cos }^{2}  \alpha  \\ 1 -  { \sin}^{2}  \alpha  = { \cos }^{2}  \alpha  \\ 1 = { \cos }^{2}  \alpha  + { \sin}^{2}  \alpha  \\ { \sin }^{2}  \alpha  + { \cos }^{2}  \alpha  = 1 \\ 1 = 1

Solución 03:

 \frac{ \cos \alpha  }{ \cot \alpha  }  =  \sin \alpha  \\  \\  \frac{ \cos \alpha }{ \sin \alpha }  =  \cot \alpha  \\  \\  \cot \alpha  =  \cot  \alpha  \\  \\ 1 = 1

Solución 04:

 \frac{ \tan \alpha  }{ \sin \alpha  }  -  \sec \alpha  = 0 \\ \\   \frac{ \tan \alpha  }{ \sin \alpha  }   =   \sec \alpha \\  \\  \tan \alpha  =  \sec \alpha  \times  \sin \alpha   \\ \\  \frac{ \sin \alpha }{ \cos \alpha  }  =  \frac{1}{ \cos \alpha  }  \times  \sin \alpha \\   \\  \frac{\cos \alpha  }{\cos \alpha  } =  \frac{ \sin \alpha }{ \sin \alpha }  \\  \\ 1 = 1

Solución 05:

 \frac{ \sin \alpha }{ \csc \alpha }  +  \frac{ \cos \alpha }{ \sec \alpha }  = 1 \\  \\  \sin \alpha  \times   \sec \alpha  +  \cos \alpha  \times  \csc \alpha  =  \sec \alpha  \times  \csc \alpha  \\ \\   \sin \alpha  \times  \frac{1}{ \cos \alpha }  +  \cos \alpha  \times  \frac{1}{ \sin \alpha }  =  \frac{1}{ \cos \alpha }  \times  \frac{1}{ \sin \alpha  } \\   \\  \frac{ \sin \alpha }{ \cos \alpha }  +  \frac{ \cos \alpha }{ \sin \alpha } =  \frac{1}{\cos \alpha   \times\sin \alpha }   \\ \\  { \sin}^{2}  \alpha  +  { \cos }^{2}  \alpha  =  \frac{\cos \alpha   \times\sin \alpha}{\cos \alpha   \times\sin \alpha} \\  \\ 1 = 1


paaoolmos: gracias!
Preguntas similares