• Asignatura: Física
  • Autor: danielfelipema38
  • hace 2 años

variables en un sistema masa resorte

Respuestas

Respuesta dada por: josuevalladarest1
1

Respuesta:

Explicación:

a finalidad es reducir un sistema de orden n a un sistema de primer orden, representado por el vectornullen la ecuación anterior.

La gran ventaja de utilizar variables de estado es que, para un sistema con muchas variables, como es el caso de un sistema masa-resorte-amortiguador o de un sistema eléctrico, necesitamos usar ecuaciones diferenciales solo para resolver un subconjunto seleccionado de variables del sistema. A partir de allí todas las demás variables del sistema se pueden evaluar algebraicamente.

El primer paso es entonces decidir cuáles serán esas variables que forman este subconjunto de variables de estado, que en las ecuaciones anteriores está representado por el vector X. Y a partir de ese conjunto, las otras variables se pueden expresar como función de las variables seleccionadas. Parece un trabalenguas, por ello mejor explicarse mediante un ejemplo.

Supongamos que tenemos el sistema de la Figura 3.5

1er paso. En este ejemplo la clave para seleccionar las variables de estado son los elementos del sistema que almacenan energía porque son los que requieren de ecuaciones diferenciales para explicar su dinámica. Por ello escribimos dichas ecuaciones para el inductor y el capacitor:

De las ecuaciones anteriores es conveniente para nuestra representación en variables de estado seleccionar los parámetros que están derivados, es decir:

2do paso. Para lograr la finalidad del método que se explicó al principio de este documento, vemos de inmediato que si tomamos nuestras dos ecuaciones diferenciales anteriores y despejamos las derivadas de las variables de estado seleccionadas (lado izquierdo), ya tenemos adelantada la estructura que buscamos alcanzar:

3er paso. Sin embargo, el lado derecho no está en función de las variables de estado seleccionadas, por lo que debemos utilizar otras ecuaciones para lograr esto. Aplicamos Kirchhoff de corriente para lograr Ic, y de voltaje para lograr Vl en función de las variables de estado seleccionadas:

Sustituimos:

4to paso. Y así hemos alcanzado expresar la dinámica de nuestro sistema en términos de las variables de estado seleccionadas:

Nota: la derivada de il no depende de il , pero la incluimos multiplicada por cero para resaltar el hecho de que debemos expresar el lado derecho en términos de las ecuaciones de estado y pasar de allí a la forma matricial presentada más adelante.

5to paso. Para completar el método sólo nos falta hallar la salida en función de las variables de estado. Si seleccionamos la salida como la corriente que atraviesa la resistencia R, y la llamamos iR, obtenemos directamente que:

O lo que es lo mismo:

Representamos así nuestro sistema en variables de estado de la forma matricial siguiente:

Una ecuación diferencial de primer orden requiere de una variable de estado. Una de segundo orden requiere de dos variables de estado. Y así sucesivamente, por ende, se podría demostrar el siguiente criterio:

Una ecuación de orden n genera n variables de estado

Debemos repetir que independientemente del orden de las ecuaciones diferenciales en la dinámica del sistema, la finalidad es reducir un sistema de orden n a un sistema de primer orden.

Estos criterios nos ayudan a abordar el caso del sistema masa-resorte-amortiguador, donde aplicaremos el mismo método para obtener su representación en variables de estado.

Sistema Masa-Resorte-Amortiguador

Supongamos ahora que tenemos el sistema de la Figura 2.15, para el cual ya habíamos encontrado su Función de Transferencia (ver: Ejemplo 2 – Función Transferencia de sistema masa-resorte-amortiguador):

Debemos encontrar para este sistema su representación en variables de estado.

1er paso. Una vez más, la clave para seleccionar las variables de estado es centrar la atención sobre aquellos parámetros que son necesarios derivar para obtener las ecuaciones diferenciales que representan la dinámica del sistema.

Para la masa 1, 2 y 3, obtendremos las siguientes expresiones, aplicando la segunda ley de Newton para movimiento traslacional y el criterio de superposición:

Donde:

Vemos claramente que debemos seleccionar x1, x2 y x3 como nuestras variables de estado, pero además vemos que cada una de estas tres ecuaciones genera dos variables de estado, por lo tanto requerimos al menos seis variables de estado para representar este sistema.

Para evitar confusión, utilizaremos la letra Z para representar nuestras variables de estado. Y para facilitarnos la vida seleccionamos a la derivada de x1 como Z2, y a x1 como Z1. Es decir:

con esta artimaña obtenemos directamente la siguiente relación:

que cumple con el objetivo del método: expresar el vector X’ en función de X, es decir:

De manera análoga, aplicamos el mismo procedimiento para el resto de las masas, y así obtenemos las otras variables de estado (que forman nuestro vector X en la ecuación anterior):

Preguntas similares