El resorte en la pistola de juguete tiene una longitud sin estirar de 100 mm. Está comprimido y bloqueado en la posición que se muestra. Cuando se aprieta el gatillo, el resorte se estira 12.5 mm y la bola de 20 g se mueve a lo largo del cañón. Determine la velocidad de la pelota cuando sale del arma. Desprecie la fricción.
Respuestas
Respuesta dada por:
10
Luego de disparar la pistola tenemos que la velocidad de la pelota cuando sale del arma es de 10.48 m/s.
Explicación:
Para resolver este problema lo que haremos un balance de energía tal que
Em₁ = Em₂
Donde inicialmente tenemos energía elástica y luego energía elástica más cinética:
Ee₁ = Ec₂ + Ee₂
0.5·k·Δx₁² = 0.5·m·V² + 0.5·k·Δx₂²
Entonces, introducimos datos:
0.5·(2000 N/m)·(0.05 m)² = 0.5·(0.02 kg)·V² + 0.5·(2000 N/m)·(0.0375 m)²
2.5 J = 0.01·V² + 1.40 J
1.1 J = 0.01·V²
V² = 110 m²/s²
V = 10.48 m/s
Por tanto, la velocidad de la pelota cuando sale el arma es de 10.48 m/s.
NOTA: para saber las distancias asociados con el resorte debemos realizar los siguientes análisis:
- Inicialmente se comprime hasta la mitad de la longitud del resorte, por tanto, la longitud desplazamiento es de 50 mm.
- Luego del disparo el resorte se descomprime 12.5 mm; es decir: el resorte quedo en la posición en 62.5 mm (50 + 12.5); en otras palabras, la longitud de desplazamiento es 37.5 mm (100 - 62.5). Esto luego del disparo.
Adjuntos:
Preguntas similares
hace 7 años