Dado el siguiente triàngulo encuentre la ecuaciònde lo que se le indica.A(-3,-2) B(-1,3) C(1,1)Ecuaciòn de la mediana del vèrtice BExpresar en forma general.?
Respuestas
1.- Halla la ecuación de la recta (o rectas) que pasando por el punto P (6, 2) forman un ángulo de 45º con la recta 2x - 3y = 6
2.- En el triángulo ABC siendo A (2, -3), B (-2, -2) y C (0, 3), calcula: a) La ecuación de la mediana correspondiente al vértice A; b) La ecuación de la altura correspondiente al vértice B; c) La ecuación de la mediatriz correspondiente al lado AB.
3.- Sean los puntos A (1, 3) y B (-2, -3), halla la ecuación de la recta que determinan y exprésala de todas las formas posibles, incluye la normal.
4.- Determinar las coordenadas de los vértices B y D del cuadrado que tiene por diagonal AC, donde A (1, 2) y C (9, 6). [B (7, 0) D (3, 8)]
5.- Halla las ecuaciones de las rectas que pasando por el punto A (4, 2) forman con los ejes un triángulo de área 18 u2. (2 soluciones). [x + y - 6 = 0; x + 4y - 12 = 0]
6.- Halla las ecuaciones de las rectas que pasan por el punto A (1, 1) y forman un ángulo de 45º con la recta r: 3x + 4y - 1 = 0. (Dar el resultado en forma general y canónica).
7.- Los vértices opuestos de un cuadrado se hallan en los puntos A (-2, 5) y C (2, 8). Halla la longitud y las ecuaciones de sus diagonales. [l = 5; 3x - 4y + 26 = 0; 8x + 6y - 39 = 0]
8.- Calcula el área del triángulo cuyos lados están en el eje de abscisas y en las rectas x - y = 0; 3x + 5y - 24 = 0. [S = 12 u2]
9.- Halla la ecuación de la recta que pasa por el punto de intersección de las rectas x - 2y - 4 = 0; 4x - y - 4 = 0 y forma un ángulo de 45º con la 9x - 5y - 12 = 0.
[y + 12/7 = 2/7 (x - 4/7); y + 12/7 = -7/2 (x - 4/7)]
10.- Calcula la distancia entre el origen de coordenadas y el pie de la perpendicular trazada desde el punto (2, 5) a la recta x + 2y - 1 = 0.
11.- Dado el triángulo de vértices A (0, 0), B (5, 1) y C (.3, 5), halla el circuncentro. [(24/11, 23/11)]
12.- Calcula el área del cuadrado que tienen los lados opuestos sobre las rectas 5x + 8y - 12 = 0; 10x + 16 y - 17 = 0. [S = 49/356 u2]
13.- Dada la recta 2x - 3y + 12 = 0 halla la ecuación de la mediatriz que en dicha recta interceptan los ejes de coordenadas. [3x + 2y +5 = 0]
14.- Los puntos A (1, 2), B (3, 4) y C (5, 8) son vértices de un triángulo. Halla el ortocentro. [21, -8)]
15.- Halla el área del triángulo de vértices A (-2, 1), B (5, 4) y C (2, -3). [S = 20 u2]
16.- Dada la recta de ecuación ax + by = 1, determinar a y b sabiendo que la recta dada es perpendicular a la recta de ecuación 2x + 4y = 11 y que para por el punto P (1, 3/2). [a = 4, b = -2]
17.- Los puntos A (0, 1), B (2, 3) y C (3, 9) son vértices de un triángulo. Halla el ortocentro y el área.[O (3/2, 3/2), S = 4 u2]
18.- Por el punto A (2, 6) se trazan dos rectas perpendiculares a las bisectrices del primer cuadrante y del segundo cuadrante. Halla: a) Las ecuaciones de dichas rectas; b) Las coordenadas de los vértices del triángulo formado por la recta 3x - 13y - 8 = 0 con dichas rectas. [a) x + y - 8 = 0; x - y + 4 = 0; b) P (7, 1), P' (-6, -2)]
19.- La recta y + 2 = m·(x + 3) pasa por el punto de intersección de las rectas 2x + 3y + 5 = 0; 5x - 2y - 16 = 0. Calcula m. [Punto intersec. (2, -3); m = -1/5]
20.- El punto A (2, 5) es vértice del triángulo ABC. Las ecuaciones de las rectas que contienen a las alturas hb y hc son x - 2y = 0 y 2x + 5y - 13 = 0, respectivamente. Halla la ecuación del lado a. [x - 4y = 0]
21.- Halla la ecuación de las rectas que pasando por el punto P (2, -3) forman un ángulo de 45º con la recta 3x - 4y + 7 = 0. [x + 7y + 19 = 0; 7x - y - 17 = 0]
22.- Dado el triángulo de vértices A (3, 1); B (-1, 5) y C (0, -3) halla el punto de intersección de la altura que parte de B con la mediana que parte de A.
[hB: 3x + 4y - 17 = 0; mA: y = 1; (13/3, 1)]
23.- Halla a para que la distancia del origen a la recta y = 1 + a(x - 2) sea 2. [a=-3/4]
24.- Hallar la ecuación de la recta determinada por los puntos A (-3, 0) y B (1, -5). Halla la ecuación de la paralela a AB trazada por el punto P (2, 1).
[5x + 4y + 15 = 0; 5x + 4y - 14 = 0]