Respuestas
Respuesta dada por:
3
cot(x) tan(x) = 1
cot^2(x) tan(x) = cot(x)
Entonces
tan(x) + cot(x) + cot(x) = sec(x) csc(x) + (4/3)
tan(x) + 2 cot(x) = sec(x) csc(x) + (4/3)
Multiplicamos todo por sen(x) cos(x)
sen^2(x) + 2 cos^2(x) = 1 + (4/3) sen(x) cos(x)
sen^2(x) + cos^2(x) + cos^2(x) = 1 + (4/3) sen(x) cos(x)
1 + cos^2(x) = 1 + (4/3) sen(x) cos(x)
cos^2(x) = (4/3) sen(x) cos(x)
cos(x) = (4/3) sen(x)
cot(x) = cos(x)/sen(x) = 4/3
**********************************
E = √[ 9 *(cot^2(x) + 1) ]
E = √[ 9 *((4/3)^2 + 1) ]
E = √[ 9 *((16/9) + 1) ]
E = √[ 16 + 9]
E = √[25]
E = 5
*********
cot^2(x) tan(x) = cot(x)
Entonces
tan(x) + cot(x) + cot(x) = sec(x) csc(x) + (4/3)
tan(x) + 2 cot(x) = sec(x) csc(x) + (4/3)
Multiplicamos todo por sen(x) cos(x)
sen^2(x) + 2 cos^2(x) = 1 + (4/3) sen(x) cos(x)
sen^2(x) + cos^2(x) + cos^2(x) = 1 + (4/3) sen(x) cos(x)
1 + cos^2(x) = 1 + (4/3) sen(x) cos(x)
cos^2(x) = (4/3) sen(x) cos(x)
cos(x) = (4/3) sen(x)
cot(x) = cos(x)/sen(x) = 4/3
**********************************
E = √[ 9 *(cot^2(x) + 1) ]
E = √[ 9 *((4/3)^2 + 1) ]
E = √[ 9 *((16/9) + 1) ]
E = √[ 16 + 9]
E = √[25]
E = 5
*********
Preguntas similares
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años