Respuestas
Respuesta:
:)
Explicación paso a paso:
(2/3)x - 5/x = 7/10 - (2/2)x + 1
2x/3 - 5/x = 7/10 - x + 1
2x/3 - 7/10 + x - 1 = 5/x
[2x/3 - 7/10 + x - 1](x) = 5
2x²/3 - 7x/10 + x² - x = 5
20x²/30 - 21x/30 + 30x²/30 - 30x/30 = 5
20x² - 21x + 30x² - 30x = 5 (30)
50x² - 51x = 150
50x² - 51x - 150 = 0
a = 50
b = -51
c = -150
{-b ± √[(b)²-4ac]} / 2a
{-(-51) ± √[(-51)²-4(50)(-150)]} / 2(50)
{51 ± √[2601 + 30,000]} / 100
{51 ± √[32,601]} / 100
{51 ± 180.56} / 100
x1 = {51 + 180.56} / 100
x1 = 231.56 / 100
x1 = 2.3156
x2 = {51 - 180.56} / 100
x2 = -129.56 / 100
x2 = -1.2956
*comprobación*
(2/3)x - 5/x = 7/10 - (2/2)x + 1
(2/3)(2.3156) - 5/(2.3156) = 7/10 - (2/2)(2.3156) + 1
4.6312/3 - 5/2.3156 = 7/10 - 2.3156 + 1
1.5437 - 2.1592 = 0.70 - 2.3156 + 1
-0.6155 ≈ -0.6156
La respuesta es correcta