Respuestas
Respuesta:
Explicación paso a paso:
a)(1+x)²=1+2x+x²
b)(a²+b³)²=a⁴+2a²b³+b⁶
c)(2h+1/2)²= 4h²+2h+1/4
d)(n³-0.5)²=n⁶-n³+0,25
e)(7p-4q)²=49p²-56pq+16q²
f)(w+2v)²=w²+4wv+4v²
Recordar:
Un binomio al cuadrado (suma) es igual al cuadrado del primer término, más el doble producto del primero por el segundo más el cuadrado segundo.
Un binomio al cuadrado (resta) es igual al cuadrado del primer término, menos el doble producto del primero por el segundo más el cuadrado segundo.
Respuesta:
Explicación paso a paso:
Un binomio a + b cuando se eleva al cuadrado, origina tres términos.
(a + b)² = a² + 2a.b + b²
a y b son expresiones algebraicas, monomios.
(a + b)³ = a³ + 3a²b + 3ab² + b³ 4 términos
origina 5 términos (se halla con el binomio de Newton)
tendrá n+1 términos.
a. a = 1 ; b = x
(1 + x)² = 1² + 2(1)(x) + x²
en el producto a.b no pongas signos, la fórmula ya lo considera,
solo escribe números y/o letras, según el caso.
(1 + x)² = 1 + 2x + x²
b. (a² + b³)² = (a²)² + 2(a²)(b³) + (b³)²
(a² + b³)² = + 2a²b³ +
c. (2h + )² = (2h)² + 2(2h)(
(2h + )² = 4h² + 2h +
d. (n³ - 0,5)² = (n³)² + 2(n³)(0,5) + (0,5)²
(n³ - 0,5)² = - n³ + 0,25
e. (7p - 4q)² = (7p)² + 2(7p)(4q) + (4q)²
(7p - 4q)² = 49p² - 56pq + 16q²
f. (w + 2v)² = w² + 2(w)(2v) + (2v)²
(w + 2v)² = w² + 4wv + 4v²
el término "a" debe ser siempre positivo, porque así lo indica
el producto notable.
ejem (- x - 2)² = [-(x + 2)]² = [(-1).(x + 2)]² = (-1 )².(x + 2)²= (x + 2)²
osea (- x - 2)² ≡ (x + 2)² son idénticos.
Otro (-2xy + 5z)² = (2xy - 5x)²
Cada vez que "extraes" el signo menos que esta delante del primer
término, este desaparece (por la potencia par), y cambian los signos internos.