Respuestas
Una magnitud física es un valor asociado a una propiedad física o cualidad medible de un sistema físico, es decir, a la que se le pueden asignar distintos valores como resultado de una medición o una relación de medidas. Las magnitudes físicas se miden usando un patrón que tenga bien definida esa magnitud, y tomando como unidad la cantidad de esa propiedad que posea el objeto patrón. Por ejemplo, se considera que el patrón principal de longitud es el metro en el Sistema Internacional de Unidades.
Existen magnitudes básicas y derivadas, que constituyen ejemplos de magnitudes físicas: la masa, la longitud, el tiempo, la carga eléctrica, la densidad, la temperatura, la velocidad, la aceleración y la energía. En términos generales, es toda propiedad de los cuerpos o sistemas que puede ser medida. De lo dicho se desprende la importancia fundamental del instrumento de medición en la definición de la magnitud.1
La Oficina Internacional de Pesas y Medidas, por medio del Vocabulario Internacional de Metrología (International Vocabulary of Metrology, VIM), define a la magnitud como un atributo de un fenómeno, un cuerpo o sustancia que puede ser distinguido cualitativamente y determinado cuantitativamente.2 A diferencia de las unidades empleadas para expresar su valor, las magnitudes físicas se expresan en cursiva: así, por ejemplo, la «masa» se indica con m, y «una masa de 3 kilogramos» la expresaremos como m = 3 kg.
Las magnitudes físicas pueden ser clasificadas de acuerdo a varios criterios:
Según su expresión matemática, las magnitudes se clasifican en escalares, vectoriales y tensorialesSegún su actividad, se clasifican en magnitudes extensivas e intensivasMagnitudes escalares, vectoriales y tensoriales[editar]Las magnitudes escalares son aquellas que quedan completamente definidas por un número y las unidades utilizadas para su medida. Esto es, las magnitudes escalares están representadas por el ente matemático más simple, por un número. Podemos decir que poseen un módulo pero carecen de dirección. Su valor puede ser independiente del observador(v.g.: la masa, la temperatura, la densidad, etc.) o depender de la posición (v.g.: la energía potencial), o estado de movimiento del observador (v.g.: la energía cinética).De acuerdo con el tipo de magnitud, debemos escoger leyes de transformación (por ej. la transformación de Lorentz) de las componentes físicas de las magnitudes medidas, para poder ver si diferentes observadores hicieron la misma medida o para saber qué medidas obtendrá un observador, conocidas las de otro cuya orientación y estado de movimiento respecto al primero sean conocidos.
Magnitudes extensivas e intensivasArtículo principal: Propiedades intensivas y extensivas
Una magnitud extensiva es una magnitud que depende de la cantidad de sustancia que tiene el cuerpo o sistema. Las magnitudes extensivas son aditivas. Si consideramos un sistema físico formado por dos partes o subsistemas, el valor total de una magnitud extensiva resulta ser la suma de sus valores en cada una de las dos partes. Ejemplos: la masa y el volumen de un cuerpo o sistema, la energía de un sistema termodinámico, etc.
Una magnitud intensiva es aquella cuyo valor no depende de la cantidad de materia del sistema. Las magnitudes intensivas tiene el mismo valor para un sistema que para cada una de sus partes consideradas como subsistemas. Ejemplos: la densidad, la temperatura y la presión de un sistema termodinámico en equilibrio.
En general, el cociente entre dos magnitudes extensivas da como resultado una magnitud intensiva. Ejemplo: masa dividida por volumen representa densidad.
Representación covariante y contravariante[editar]Las magnitudes tensoriales de orden igual o superior a uno admiten varias formas de representación tensorial según el número de índices contravariantes y covariantes. Esto no es muy importante si el espacio es euclídeo y se emplean coordenadas cartesianas, aunque si el espacio no es euclídeo o se usan coordenadas no cartesianas es importante distinguir entre diversas representaciones tensoriales que físicamente representan la misma magnitud. En relatividad general dado que en general el espacio-tiempo es curvo el uso de representaciones convariantes y cotravariantes es inevitable.