Determina si los siguientes pares de vectores son ortogonales, no ortogonales o paralelos entre sí: Con el procedimiento porfa :D


a=(\frac{2}{5} ;\frac{13}{5}) <br /><br />b=(4;26)


Doy corona :3

Respuestas

Respuesta dada por: alejandragiler3
0

Respuesta:

En matemáticas, la derivada parcial de una función de varias variables es la derivada con respecto a cada una de esas variables manteniendo las otras como constantes. Las derivadas parciales son usadas en cálculo vectorial y geometría diferencial.

La derivada parcial de una función {\displaystyle f(x,y,\dots )}{\displaystyle f(x,y,\dots )} con respecto a la variable {\displaystyle x}x se puede denotar de distintas manera:

{\displaystyle {\frac {\partial f}{\partial x}},{\frac {\partial }{\partial x}}f,D_{1}f,\partial _{x}f,f_{x}^{\prime }{\text{ o }}f_{x}.}{\displaystyle {\frac {\partial f}{\partial x}},{\frac {\partial }{\partial x}}f,D_{1}f,\partial _{x}f,f_{x}^{\prime }{\text{ o }}f_{x}.}

Donde {\displaystyle \partial }\partial es la letra 'd' redondeada, conocida como la 'd de Jacobi'. También se puede representar como {\displaystyle D_{1}f(x_{1},x_{2},\cdots ,x_{n})}{\displaystyle D_{1}f(x_{1},x_{2},\cdots ,x_{n})} que es la primera derivada respecto a la variable {\displaystyle x_{1}}{\displaystyle x_{1}} y así sucesivamente.1​

Explicación paso a paso:

Preguntas similares