• Asignatura: Matemáticas
  • Autor: amairanicelesteea
  • hace 3 años

Si un cuadrado mide 33.7 cm de lado ¿Cual es la valor de su diagonal?

Respuestas

Respuesta dada por: gfrankr01p6b6pe
3

TEOREMA DE PITÁGORAS

Ejercicio

Veamos. Dos lados consecutivos del cuadrado, y la diagonal, forman un triángulo rectángulo.

‎      ‏‏‎

[Ver imagen adjunta]

  • Los lados consecutivos serían los catetos del triángulo rectángulo.
  • La diagonal sería la hipotenusa del triángulo rectángulo.

‎      ‏‏‎

El Teorema de Pitágoras es:

\large{\boxed{\mathsf{(c_{1})^{2} + (c_{2})^{2} = h^{2}}}}

Donde:

  • c₁ y c₂ son los catetos
  • h es la hipotenusa

‎      ‏‏‎

Aplicamos Teorema de Pitágoras:

       \mathsf{33,7^{2} + 33,7^{2} = x^{2}}

\mathsf{1135,69 + 1135,69 = x^{2}}

               \mathsf{2271,38 = x^{2}}

            \mathsf{\sqrt{2271,38} = x}

                          \mathsf{x = 47,658997...}

Aproximamos a dos decimales:

                         \boxed{\mathsf{x \approx  47,66}}

‎      ‏‏‎

Respuesta. La medida de la diagonal es 47,66 centímetros.

‎      ‏‏‎

Ver más: https://brainly.lat/tarea/35024504

‎      ‏‏‎

Adjuntos:
Preguntas similares