Un acróbata viaja en una motocicleta a 100km/h (exprese en m/s) sobre una rampa que forma un ángulo de 60° con la horizontal. Si el acróbata hace un salto utilizando esa rampa y cae en otra similar que está en una distancia X, determina:
a) velocidad inicial vertical
b) velocidad inicial horizontal
c) la altura máxima
d) el tiempo que demora el acróbata en el aire
e)la distancia horizontal (X total) a la que debe estar la rampa para que el acróbata caiga sobre ella.
Respuestas
Respuesta:
qué determina dónde cae una pelota de béisbol bateada? ¿Cómo se
describe el movimiento de un carro de la montaña rusa en una curva,
o el vuelo de un halcón que describe círculos? ¿Cuál golpea el suelo
primero: una pelota de béisbol que simplemente se deja caer o una que se arroja horizontalmente?
No podemos contestar estas preguntas usando las técnicas del capítulo 2, donde
se consideró que las partículas se movían solo en línea recta. En lugar de ello, es
necesario ampliar nuestras descripciones del movimiento a situaciones en dos y en
tres dimensiones. Seguiremos empleando las cantidades vectoriales de desplazamiento, velocidad y aceleración; sin embargo, ahora no estarán a lo largo de una sola
línea. Veremos que muchas clases de movimientos importantes se dan solo en dos
dimensiones, es decir, en un plano, y pueden describirse con dos componentes de
posición, velocidad y aceleración.
También necesitamos considerar cómo describen el movimiento de una partícula
observadores diferentes que se mueven unos con respecto a otros. El concepto de
velocidad relativa desempeñará un papel importante más adelante en este libro,
cuando estudiemos colisiones, cuando exploremos los fenómenos electromagnéticos,
y cuando presentemos la teoría especial de la relatividad de Einstein.
En este capítulo se conjunta el lenguaje de vectores que vimos en el capítulo 1 con
el lenguaje de la cinemática del capítulo 2. Como antes, nos interesa describir el
movimiento, no analizar sus causas. No obstante, el lenguaje que aprenderemos aquí
será una herramienta esencial en capítulos posteriores, al estudiar la relación entre
fuerza y movimiento.
Explicación: